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ABSTRACT 
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Mistletoes are shrubs that typically parasitize the branches of host trees and rely on avian frugivores for seed 

dispersal. Because mistletoes are restricted to a narrow range of suitable recruitment sites and avian frugivores 

are more visible than other guilds of seed dispersers, mistletoe-frugivore systems afford opportunities for 

assessing the roles of dispersal limitation and local environment in determining plant distribution. These 

mechanisms have been proposed as determinants of the observed association of oak mistletoe [Phoradendron 

leucarpum (Raf.) Reveal & M. C. Johnst.] with forested wetlands in eastern Virginia and North Carolina, USA. I 

tested the alternative hypothesis that variation in host availability drives this habitat relationship, instead finding a 

significant positive effect of forested wetland habitat on oak mistletoe occurrence after correcting for differences 

in host availability.  

I used a community occupancy model to analyze avian occurrence data and estimate species-specific 

relationships between disperser occurrence and forested habitat type. I did not find statistically significant 

relationships between occurrence and forested wetland habitat for either of the two principal dispersers of oak 

mistletoe in the study area, the eastern bluebird (Sialia sialis) and cedar waxwing (Bombycilla cedrorum). While 

these results suggested avian dispersers to be more widespread with regards to habitat type than oak mistletoe, 

the potential remained for these species to show cryptic habitat specificity. As such, I looked at patterns of oak 

mistletoe genetic structure versus habitat type. Analyses showed evidence for gene flow across habitat types and 

the presence of a genetically distinct population of oak mistletoes restricted to hosts in the genus Nyssa L. 

I used seed sowing experiments to quantify the roles of light availability and flood regime in determining the 

initial survival of oak mistletoe. These experiments allowed me to evaluate the potential for establishment 

limitation to determine variation in oak mistletoe occurrence across different forested habitats. I found support for 



 
 

 

a relationship between manipulated local light availability conditions and seedling establishment rates. Variation in 

oak mistletoe establishment success across forested habitat types is a potentially important mechanism in 

determining observed habitat relationships in oak mistletoe. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 RATIONALE 

Parasites have historically been neglected in some fields of ecology (Mittelbach 2012), but predictive theories 

on the spatial distribution of parasite populations have emerged from a substantial body of research (Poulin 2007). 

The mechanisms driving these patterns continue to draw the interest of researchers. Recent studies have 

attempted to explain the predictably aggregated spatial distribution of parasite populations using information on 

variation among hosts in their vulnerability to infection (Hernandez & Sukhdeo 2008, MacIntosh et al. 2010). 

Researchers viewing populations as metapopulations have also given attention to the influence of dispersal 

limitations on parasite distributions (Poulin 2007), with variation in dispersal rates and distances largely attributed 

to variation in host behavior (Blouin et al. 1995, Criscione & Blouin 2004). Due to the visibility of mistletoes and 

their dispersers, mistletoe-frugivore systems offer excellent opportunities for testing the generality of these and 

other mechanisms proposed as determinants of parasite distributions (Aukema 2003).  

The mistletoe habit of being an obligate hemiparasitic shrub infecting host stems and branches has arisen 

independently in five different lineages within the plant order Santalales (Vidal-Russell & Nickrent 2008). As 

parasites, mistletoes exert a negative influence on host trees, acquiring water and nutrients from host xylem and 

in some cases photosynthates from host phloem (Bennetts et al. 1996, Norton & Carpenter 1998). When a tree 

species of economic importance is parasitized, information on mistletoe distribution and dispersal can be 

important for scientists and managers interested in mistletoe control (Bennetts et al. 1996, Gougherty 2013). 

Often, however, the negative effects of mistletoe on hosts are minor and overshadowed by the positive effects of 

mistletoes in ecological communities; relationships between mistletoes and both frugivores and pollinators can be 

considered mutualistic (Bennetts et al. 1996, Aukema 2003, 2004, Dickinson & McGowan 2005, Mellado & Zamora 

2014b).  

Here I used field surveys and planting experiments to examine the influences of avian frugivore behavior, host 

tree abundance, and environmental conditions on the distribution of oak mistletoe [Phoradendron leucarpum 

(Raf.) Reveal and M.C. Johnst.], a widely distributed mistletoe species in the family Viscaceae that is obligately 
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dispersed by generalist avian frugivores (Panvini 1991, Reid 1991). The use of population genetics analyses for 

estimating gene flow among mistletoe populations was used to inform avian disperser behavior and habitat use. 

This work was conducted in the Coastal Plain and Piedmont regions of Virginia and North Carolina, a portion of the 

range of oak mistletoe where little formal work has been done on mistletoe ecology (Gougherty 2013, but see 

Baldwin Jr. & Speese 1957). I was especially interested in determining the relative importance of potential drivers 

of a mistletoe habitat relationship in the study area; this aspect of mistletoe distribution was here defined as 

variation in mistletoe occurrence across different forested habitat types.  

 

1.2 MISTLETOE HOST ASSOCIATIONS 

Some mistletoe species appear to be generalists in terms of host tree specialization when viewed across their 

entire range, but at the population-level relatively few tree species are parasitized (May 1971, Clay et al. 1985, 

Norton & Carpenter 1998, Aukema 2003, Mellado & Zamora 2014b). With the primary host tree species parasitized 

by a given mistletoe population often being the most common potential host at that location (Mellado & Zamora 

2014b), the existence of mistletoe “host races” that are adapted to the locally preferred host species has been 

suggested (Clay et al. 1985, Panvini 1991). In many cases it is still unclear whether local host tree specialization is 

due primarily to physical or biochemical interactions between mistletoes and hosts (Mellado & Zamora 2014b), 

avian frugivore behavior (Norton & Carpenter 1998), or variation in susceptibility of host tree populations to 

infection (May 1971, Panvini 1991, Sallé et al. 1993, Mellado & Zamora 2014b). 

The distribution of host trees has been found to be the most influential factor determining observed mistletoe 

habitat relationships in some systems (Gougherty 2013, Lira-Noriega and Peterson 2014). Host tree availability has 

been proposed to be responsible for the positive association between oak mistletoe and forested wetlands in the 

southeastern US (Weakley 2012). Quantifying host availability to test this hypothesis using field data required the 

identification of potential host trees; regional variation in the diversity of host species parasitized by oak mistletoe, 

along with host size, must be considered when making these identifications (Kuijt 2003). Studies documenting oak 

mistletoe host associations in the field did not account for variation in habitat type at sites hosting mistletoe (Reed 

& Reed 1951, Hemmerly et al. 1979, Rucker & Hemmerly 1976, Brown & Hemmerly 1979), yet interactions could 
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exist between habitat type and potential determinants of these associations (Clay et al. 1985, Norton & Carpenter 

1998, Aukema 2004).  

 

1.3 MISTLETOE DISTRIBUTIONS 

Numerous studies have found mistletoes to show clumped spatial distributions at the individual tree level (i.e. 

some individual trees with much higher infection rates than others; Panvini 1991, Martínez del Rio et al. 1996, 

Aukema & Martínez del Rio 2002, Aukema 2003, Gougherty 2013) and at larger spatial scales, such as among 

patches of forested habitat (Martínez del Rio et al. 1996, Aukema & Martínez del Rio 2002, Aukema 2003, 2004). 

Various factors may make some individual host trees more vulnerable to mistletoe infections than others (May 

1971, Aukema & Martínez del Rio 2002, Kuijt 2003, Lira-Noriega & Peterson 2014, Mellado & Zamora 2014b). 

Mistletoe aggregations at various spatial levels have largely been attributed to a positive feedback mechanism 

where disperser frugivores are attracted to those trees or patches that are already infected with mistletoe and 

disperse seeds to nearby sites (Martínez del Rio et al. 1996, Aukema & Martínez del Rio 2002, Aukema 2003, 2004, 

Carlo & Aukema 2005, Thompson & Poindexterss 2005). Specialist frugivores have usually been implicated in such 

mechanisms, while generalist frugivores could also contribute to positive feedback processes (Mellado & Zamora 

2014a). Mistletoes have been found to be clumped spatially at the within-tree level (Mellado & Zamora 2014a), 

and results from planting experiments suggest environmental conditions, branch thickness, and seed predation 

limit potential recruitment sites and cause frugivore species to have varying efficiencies as dispersers due to 

behavioral differences (Mellado & Zamora 2014b). 

Even with the relatively high visibility of many mistletoes and their dispersers, the relative importance of 

environmental conditions, avian frugivore habitat relationships, and host tree availability in determining mistletoe 

distributions at scales larger than the within-tree or individual tree levels remains unclear in many cases (Panvini 

1991, Aukema 2004). Many studies maintain the importance of considering host tree abundance and distribution 

when studying mistletoe distributions (Panvini 1991, Aukema 2003, 2004, Kuijt 2003, Thompson & Poindexterss 

2005, Gougherty 2013, Lira-Noriega & Peterson 2014, Mellado & Zamora 2014b). Correlations between 

distributions of mistletoes and their avian frugivores led researchers to cite habitat choices of birds as another 
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potentially determinant factor (Panvini 1991, Martínez del Rio et al. 1996, Aukema 2004, Lira-Noriega & Peterson 

2014). 

Relationships between mistletoe distributions and those of their avian dispersers may be functions of bird 

movement patterns, or alternatively, could be attributed to frugivores being attracted to sites that contain 

mistletoe fruits (Martínez del Rio et al. 1996, Lira-Noriega & Peterson 2014). If birds are driving mistletoe 

distributions, then other factors that determine the distributions of avian frugivores should also explain spatial 

patterns of mistletoe infections (Martínez del Rio et al. 1996, Lira-Noriega & Peterson 2014, Mellado & Zamora 

2014b). Such a process has been suggested to be responsible for high rates of mistletoe infections in some urban 

areas (Gougherty 2013). Bird behavior has been cited as being responsible for mistletoe distribution patterns at 

the individual tree level, with higher infection rates on taller trees (Martínez del Rio et al. 1996, Aukema & 

Martínez del Rio 2002, Aukema 2003, Carlo & Aukema 2005, Mellado & Zamora 2014b) and female individuals in 

dioecious species (van Ommeren & Whitham 2002, Aukema 2003, Carlo & Aukema 2005) mirroring expected 

patterns in generalist frugivore behavior. Increased tree age has been cited as an alternative reason for higher 

infection rates on taller trees (Gougherty 2013).  

Oak mistletoe is light-demanding (Panvini 1991, Mellado & Zamora 2014b) and most common in forest edge 

habitats. The affinity of oak mistletoe for forested wetland habitat in the study area could be driven by consistent 

differences in host tree quality due to local environmental conditions. Photosensitivity of oak mistletoe seeds with 

respect to germination was found in laboratory trials in the early 20th century (Gardner 1921), with light later 

proposed as an influential factor in determining observed spatial distribution patterns in this species (Eleuterius 

1976). More recent work involved planting oak mistletoe seedlings in the field and maintained light availability as 

critical for seedling establishment (Randle et al. 2018). My work aimed to examine the generality of this result and 

the relative importance of light compared to other factors in determining oak mistletoe distributions. 

 

1.4 MISTLETOE DISPERSAL BY AVIAN FRUGIVORES 

As recruitment limitations are important drivers of various metrics in plant communities, seed dispersal is an 

important process in plant community ecology (Howe & Smallwood 1982, Tilman 1997, Wenny & Levey 1998, 

Norton & Carpenter 1998, Webb & Peart 2001, Wang & Smith 2002, Aukema 2003, Carlo & Aukema 2005). For 
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plant species with very restricted suitable establishment sites, such as mistletoes, directed dispersal by frugivores 

can be especially important (Wenny & Levey 1998, Carlo & Aukema 2005). Primary seed dispersal, such as that 

accomplished by avian frugivores in mistletoe dispersal systems, is one process among many in the seed dispersal 

cycle (Howe & Smallwood 1982, Wang & Smith 2002). Other processes such as secondary seed dispersal, the post-

dispersal movement of seeds, and seed predation can also be important for plant recruitment (Wang & Smith 

2002, Mellado & Zamora 2014b) and are often confounded with primary seed dispersal when current plant 

distributions are used to make inference about the overall seed dispersal cycle. 

The avian frugivore species essential for dispersing seeds of many mistletoe species are often classified as 

either specialists or generalists. Specialists depend on mistletoe fruits as the major portion of their diet for much of 

the year, while generalists feed on mistletoe fruits for only a portion of the year (Reid 1991, Aukema & Martínez 

del Rio 2002, Dickinson & McGowan 2005, Weinkam 2013) or in only some portions of their range (Reid 1991); 

many species may fall somewhere in between the two categories (Reid 1991, Aukema 2003). Mistletoe species in 

northern temperate areas often completely lack specialized frugivores in their local avifauna (Reid 1991, Mellado & 

Zamora 2014a) and mistletoe populations in these regions must rely on generalist frugivores for dispersal (Mellado 

& Zamora 2014a). Indeed, generalist frugivores have often been cited as being primarily responsible for starting 

new infections as they are more prone to foraging in uninfected trees and patches than are specialists (Martínez 

del Rio et al. 1996, Aukema & Martínez del Rio 2002, Aukema 2003, 2004, Carlo & Aukema 2005, Thompson & 

Poindexterss 2005). By starting new mistletoe infections some generalist frugivores may expand the foraging 

opportunities of mistletoe specialists (Carlo & Aukema 2005). While the importance of mistletoes as resources for 

specialist frugivorous species with diets composed primarily of mistletoe fruits is obvious, less is known about the 

importance of mistletoe fruits to generalist frugivore species (Mellado & Zamora 2014a). The importance of 

mistletoe fruits in generalist frugivore diets may vary among years due to variation in crops of mistletoe fruits and 

crops of other food resources (van Ommeren & Whitham 2002, Weinkam 2013).   

Seeds of most mistletoes are covered in a material called viscin that adheres to host branches after seeds are 

defecated by avian frugivores or dispersed by birds via other external mechanisms, such as bill-wiping (Panvini 

1991, Reid 1991, Aukema 2003, 2004, Mellado & Zamora 2014b). Seeds of the mistletoe species Viscum album and 

likely other generalist-dispersed mistletoe species do not require ingestion to germinate and establish, expanding 
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the diversity of potential avian dispersers (Mellado & Zamora 2014a). Numerous studies have shown that rates of 

mistletoe seedling establishment are highest on host branches or portions of branches that are thinner in diameter 

(Reid 1991, Norton & Carpenter 1998, Mellado & Zamora 2014a, Mellado & Zamora 2014b), making certain 

disperser agents, especially smaller species that perch on thin branches, more effective at successful mistletoe 

dispersal than others (Reid 1991, Mellado & Zamora 2014a). 

Frugivores have mutualistic relationships with plant species when seed dispersal is accomplished and seedlings 

successfully recruit into plant populations (van Ommeren & Whitham 2002, Aukema 2003, Mellado & Zamora 

2014a). In mistletoe-frugivore systems the benefits to mistletoes are obvious, with directed dispersal to specific 

recruitment sites (Howe & Smallwood 1982, Norton & Carpenter 1998, Aukema & Martínez del Rio 2002, Aukema 

2003) and long-distance gene flow (Panvini 1991) accomplished by avian dispersers. Many studies have found 

mistletoe abundance to be a strong predictor of frugivore distributions (Martínez del Rio et al. 1996, Aukema & 

Martínez del Rio 2002, van Ommeren & Whitham 2002, Aukema 2003, Lira-Noriega & Peterson 2014), suggesting 

the importance of mistletoe fruits to frugivores as a food source. Removal experiments have provided even 

stronger evidence of the importance of mistletoe fruits to avian dispersers. At the individual tree level, mistletoe 

removal caused reduced seed rain, presumable due to lower foraging rates by specialist frugivores (Aukema & 

Martínez del Rio 2002). Fruits of the mistletoe P. villosum are a very important winter food resource for the 

western bluebird (Sialia mexicana), a generalist frugivore. Removal of P. villosum shrubs at the scale of western 

bluebird winter territories caused changes in the formation and behavior of western bluebird social groups 

(Dickinson & McGowan 2005). An understanding of mechanisms determining mistletoe distributions could aid 

managers interested in maintaining this resource for avian frugivores (Renne et al. 2001).  

As an evergreen species, oak mistletoe shows prominently among the branches of its deciduous tree hosts in 

the winter landscape of the southeastern US. This visibility is likely an advantageous trait given the importance of 

frugivorous birds to the dispersal of oak mistletoe (Sutton 1951, Gougherty 2013). I assumed two generalist avian 

frugivores known to include oak mistletoe fruits as substantial portions of their winter diet, the cedar waxwing 

(Bombycilla cedrorum; Sutton 1951, Eleuterius 1976) and eastern bluebird (Sialia sialis; Weinkam 2013), to be the 

primary dispersers of mistletoe seeds in the study area. I then quantified relationships between distributions of 

this mistletoe and these focal frugivore species (Panvini 1991, Martínez del Rio et al. 1996, Gougherty 2013). 
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1.5 METHODOLOGICAL JUSTIFICATIONS 

When analyzing data from field surveys for plants or animals, failure to account for imperfect detection 

probability can bias estimates of species distributions and covariate relationships (MacKenzie et al. 2002, Tyre et 

al. 2003, Kéry et al 2008, Ruiz-Gutiérrez et al. 2010). Occupancy models (MacKenzie et al. 2002) are a popular way 

to estimate species distributions and covariate relationships using presence-absence data from repeated field 

surveys while accounting for imperfect detection. I used this approach to estimate relationships between avian 

frugivore occurrence and forested habitat type using point count data. 

Even with evidence from occupancy models suggesting co-occurrence between two species, experimental 

studies provide much stronger evidence for species interactions than field survey data (James & McCulloch 1985, 

MacKenzie et al. 2004, Bailey et al. 2009, Richmond et al. 2010). Researchers studying mistletoe distribution have 

used seed sowing experiments (Clay et al. 1985, Mellado & Zamora 2014b) and quasi-experiments (Mellado & 

Zamora 2014a, Mellado & Zamora 2014b) to look at the effects of host tree species and environmental conditions 

on mistletoe germination and establishment success. Here I used quasi-experimental and experimental seed 

sowing methods to confirm results suggested by field survey data and occupancy models. I know of few other 

mistletoe studies that combine both observational and experimental approaches (Aukema & Martínez del Rio 

2002, Mellado & Zamora 2014a). 

Panvini (1991) suggested bird behavior as a potential mechanism limiting gene flow among oak mistletoe 

populations. I hypothesized that habitat specialization exhibited by populations or species of mistletoe dispersers 

in the study area would produce genetic structure among mistletoe populations. To test this hypothesis, I used 

microsatellite markers to examine fine-scale genetic differentiation across oak mistletoe populations occupying 

different habitat types.   

 

 

 

 

 

 



8 
 

 

CHAPTER 2 

THE ROLE OF HOST AVAILABILITY IN DETERMINING THE DISTRIBUTION OF OAK MISTLETOE [PHORADENDRON 

LEUCARPUM (RAF.) REVEAL & M. C. JOHNST.] ACROSS POTENTIAL HOST TREE SPECIES AND HABITAT TYPES IN 

EASTERN VIRGINIA AND NORTH CAROLINA 

 

2.1 INTRODUCTION 

Mistletoes are hemiparasitic shrubs that typically parasitize the branches of host trees and rely on avian 

frugivores for seed dispersal (Calder & Bernhardt 1983). Because most mistletoes are restricted to a narrow range 

of suitable recruitment sites (Overton 1994, Alexander et al. 2012, Mellado & Zamora 2014b) and avian frugivores 

are more visible than other guilds of seed dispersers, mistletoe-frugivore systems afford opportunities for 

exploring the roles of dispersal limitations and environmental conditions in dictating plant distributions (Martínez 

del Rio et al. 1996, Carlo & Aukema 2005, Roxburgh 2007, Caraballo-Ortiz et al. 2017). The presence and 

abundance of suitable host trees must be accounted for when making inferences about factors driving mistletoe 

distributions (Overton 1994, Norton & Carpenter 1998, Kuijt 2003, Aukema 2004). Regional variation in host usage 

by mistletoes should be considered when quantifying host availability, as with parasites in general (Poulin 2005, 

Stanko et al. 2006). 

 

Regional host associations 

Host availability could be the most important driver of mistletoe distributions in some systems (Caraballo-Ortiz 

et al. 2017). Accounting for regional variation in host usage, hereafter a “regional host association”, is necessary to 

avoid misidentifying available trees as potential hosts. Regional host associations can collectively be viewed as a 

disjunction between the diversity of hosts parasitized across the range of a mistletoe species and the smaller 

subsets of available host species parasitized at the level of a mistletoe population (May 1971, Kuijt 2003, Caraballo-

Ortiz et al. 2017, Randle et al. 2018). Factors determining regional host associations largely remain unidentified 

(Kuijt 2003); variation in mistletoe-host compatibility (Paine 1950, May 1971, Clay et al. 1985), avian disperser 

behavior (Monteiro et al. 1992, Caraballo-Ortiz et al. 2017), and the phenology of gaseous cues released by hosts 

(Randle et al. 2018) have been proposed as drivers of such regional variation in some systems. 
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The identification of the mechanisms that determine regional mistletoe host associations using empirical data 

requires a consideration of variation in habitat type (Clay et al. 1985, Norton & Carpenter 1998, Aukema 2004). 

Regional variation in parasitism of a widespread host species could be related to differences in habitats used by 

the host or mistletoe. Habitat-specific variation in avian disperser behavior or environmental conditions could then 

drive the observed lack of parasitism in certain regions.  

Regardless of variation in habitat usage shown by a mistletoe or its host, regional variation in assemblages of 

mistletoe seed dispersers could drive differences in mistletoe host associations (Jordano 1994, Bleher & Bohning-

Gaese 2001, Renne et al. 2002, Yule & Bronstein 2018). Preferences for perching and foraging in different potential 

host tree species could vary across mistletoe seed dispersers because of host habitat (Monteiro et al. 1992, 

Bennetts et al. 1996, Martínez del Rio et al. 1996, Norton & Carpenter 1998, Kuijt 2003, Lira-Noriega & Peterson 

2014, Mellado & Zamora 2014b) or variation in the fleshy fruit resources offered by hosts (van Ommeren & 

Whitham 2002, Kuijt 2003, Carlo & Aukema 2005, Caraballo-Ortiz et al. 2017). The effect of the distribution of fruit 

resources other than mistletoe is especially important to consider in areas where all mistletoe dispersers are 

generalist frugivores (Reid 1991, Carlo 2005, Mellado & Zamora 2014a, Caraballo-Ortiz et al. 2017, Donoso et al. 

2017).  

In some cases, host tree usage is proportional to host availability (Kuijt 2003, Mellado & Zamora 2014b), and 

positive relationships between the diversity of available trees and the diversity of mistletoe hosts have been 

observed (Kuijt 1969, Norton & Carpenter 1998). Such patterns suggest that some regional host associations could 

be largely driven by random chance (Kuijt 1969). The existence of genetically distinct mistletoe populations 

predisposed to parasitizing the most common available host species could also drive such patterns (Clay et al. 

1985, Norton & Carpenter 1998). An alternative parasite-host pattern was found by Randle et al. (2018), who 

showed a difference between the species composition of mistletoe hosts and overall tree diversity at one site. 

 

Oak mistletoe habitat and host relationships 

The oak mistletoe [Phoradendron leucarpum (Raf.) Reveal & M. C. Johnst.] is a parasitic shrub that infects stems 

of a variety of woody plant species across the southern United States (US; Panvini 1991, Kuijt 2003) and for which 

seed dispersal is mediated by avian frugivores (Sutton 1951, Panvini 1991, Gougherty 2013). In the study area of 
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eastern Virginia and North Carolina, oak mistletoe is more common in forested wetlands of the Coastal Plain than 

in other forested habitats (Weakley 2012), a distributional pattern I henceforth refer to as a habitat relationship. 

The factors most important in determining such patterns remain unidentified (Panvini 1991, Kuijt 2003, Hawkins 

2010, Gougherty 2013).  

Host tree availability has been proposed to explain the relationship between oak mistletoe and forested 

wetlands in the southeastern US (Weakley 2012), yet some host tree species such as red maple (Acer rubrum L.) 

occur in a variety of habitats. This implies that the habitat itself may serve as a factor independent of host species 

availability. Oak mistletoe is likely an important resource for avian frugivores wintering in forested wetlands of the 

region (Watson 2001, Aukema & Martínez del Rio 2002, Dickinson & McGowan 2005, Watson & Herring 2012). 

Given this potential relationship, understanding the relative roles of avian behavior, host availability, and 

environmental conditions in maintaining its presence in forested wetlands remains important. 

Regional oak mistletoe host associations have been documented with empirical data (Reed & Reed 1951, 

Rucker & Hemmerly 1976, Hemmerly et al. 1979, Brown & Hemmerly 1979, Randle et al. 2018), yet the relative 

importance of potential driving factors in maintaining these associations remain largely unexplored (Kuijt 2003, 

Hawkins 2010). I split the study area into host association regions based partly on observed geographic variation in 

parasitism of widespread host species by oak mistletoe. Both the existence of genetic host races of oak mistletoe 

and their potential as drivers of regional host associations in other portions of its range have been suggested by 

results from common garden experiments (May 1971, Clay et al. 1985). I failed to find evidence for a correlation 

between genetically distinct oak mistletoe populations and host association regions in the study area (Chapter 3). 

Especially evident was variation in parasitism of sweetgum (Liquidambar styraciflua L.) across host association 

regions in the study area despite the ubiquitous distribution of this tree species in forested wetlands (Weakley et 

al. 2012). The species composition and behavior of avian frugivores can be expected to be similar in forested 

wetlands across the relatively small area I am studying (Hamel 1992, Dickson et al. 1993, Wigley & Roberts 1994, 

Wakeley & Roberts 1996, Tikkanen et al. 2021). If differences in frugivore characteristics do exist across the study 

area, such variation is unlikely to be a determinant of regional host associations; many tree species parasitized by 

oak mistletoe in eastern Virginia and North Carolina do not offer fleshy fruit resources to generalist avian 
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frugivores (Weakley et al. 2012). Such resources are generally absent in winter from those host species that do 

bear fleshy fruits during other seasons. A list of known host species from the study area is listed in the Appendix.  

 

Relationships between host availability and oak mistletoe distribution 

Oak mistletoe habitat relationships could be explained by frugivore behavior (Lamont & Southall 1982, 

Martínez del Rio et al. 1996, Aukema 2004, Krasylenko et al. 2020), with variation in local environmental 

conditions as another potential determining factor (Eleuterius 1976, Panvini 1991, Weakley et al. 2012). Survey 

data on the occurrence of avian frugivores in winter across the aforementioned plots suggest that avian seed 

dispersers are generalists with regards to forested habitat type, pointing to local environmental conditions as the 

most important factor determining oak mistletoe habitat relationships (Chapter 3). Here I tested the alternative 

hypothesis that such habitat relationships are explained by host tree availability (Gougherty 2013, Lira-Noriega and 

Peterson 2014). Unlike other studies of the relationship between host abundance and mistletoe occurrence, I 

acknowledged the existence of regional host associations and used region-specific lists of known host species 

when quantifying host availability. I also tested the importance of host availability as an alternative to other 

potential drivers of regional variation in parasitism of sweetgum by oak mistletoe.  

 

2.2 METHODS 

Oak mistletoe habitat relationships 

I selected 96 circular plots with 25-m radii to survey for the presence or absence of oak mistletoe during one of 

five winters (Dec–Mar) from 2015–2020 (Fig. 1). I surveyed in winter when deciduous trees were leafless to 

maximize detection rates of the evergreen mistletoe shrubs. These plots were selected in the Coastal Plain and 

Piedmont of Virginia and North Carolina (NC) using stratified random sampling, with forested wetlands serving as 

one stratum (n = 54) and all other forested habitats serving as the other (n = 42). The species and diameter at 

breast height (DBH) of all trees parasitized by oak mistletoe within each plot was recorded. Most plots were visited 

2-4 times per winter and were re-checked for the presence of mistletoe during repeat visits to account for the 

imperfect detection of mistletoe at plots (Fadini & Cintra 2015, Caraballo-Ortiz et al. 2017). 
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I collected data on tree stems present within sub-plots to quantify host availability. All stems of tree species 

present within a 10 m x 10 m square sub-plot centered on the central point of each 25-m radius circular plot were 

identified to the species or genus level and DBH was recorded. Stems of tree species were measured even if 

multiple-stemmed saplings were encountered; woody species considered shrubs were not known as oak mistletoe 

hosts in the study area and those such species commonly encountered are listed in the Appendix.  

Sub-plot data were assigned to a host association region based on location to avoid mis-identifying tree species 

as hosts in areas where parasitism of that species by oak mistletoe is rare or absent. Maps depicting the parasitism 

of 17 taxa that show more widespread occurrence in sub-plot data are provided in the Appendix. First, all plots 

were placed into the three physiographic regions of the study area: outer Coastal Plain (n = 46), inner Coastal Plain 

(n = 30), and Piedmont (n = 20), with distinctions made based on counties in NC and as defined in Weakley et al. 

(2012). I expected these three regions to be related with geographic host associations as they are with plant 

community composition (Weakley et al. 2012), and to account for additional host association regions apparent in 

survey data (e.g. variation in parasitism of Carya spp.) I further split the inner Coastal Plain into two regions: one 

region from the James River watershed north and one region south of this watershed. Finally, the portions of both 

the inner and outer Coastal Plains within the Cape Fear and Lumber River watersheds in the southeastern section 

of the study area, hereafter referred to as the southeastern region, were split into a fifth region to account for a 

seemingly sharp shift in parasitism rates of the widespread tree sweetgum. 

Species of potential host stems selected from sub-plot data were only those found to serve as hosts in the 

region containing the sub-plot. The region-specific lists used for such selections came from both the identity of 

parasitized trees recorded at plots within the respective region and the species identity of parasitized trees at 

regional sites selected ad hoc in forested habitats; a total of 125 such sites were established across the study area 

(Fig. 2). Due to the scarcity of mistletoe in forested habitats near the northern edge of my study area, I included 

such data from two sites in southeastern Maryland. Basal area (BA) in m2ha-1 for each region-specific potential host 

species was calculated and summed for each sub-plot to represent plot-specific host tree availability during 

subsequent analyses. 

Generalized linear models (GLM; Bolker et al. 2009) were developed to estimate the effects of habitat type 

(forested wetland versus other forested habitats) and potential host tree BA on mistletoe occurrence. Potential 
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host tree BA was normalized to allow easy interpretation of the effect of habitat type after accounting for host tree 

availability. I used the package R2WinBUGS (Sturtz et al. 2005) in R (R Core Team 2021) to estimate posterior 

distributions in WinBUGS (Lunn et al. 2000) with uninformative prior distributions for all parameters and 3 Markov 

chain Monte Carlo (MCMC) chains run for 100,000 iterations with a burn-in of 20,000 and thinning by 4. 

Convergence for all parameters was assessed using trace plots and R-hat values (Gelman & Hill 2007). The effect of 

habitat was considered statistically significant if 95% credible intervals for habitat-specific intercept parameters did 

not overlap (Flanders et al. 2015).  

 

Oak mistletoe host associations 

To compare species-specific frequencies of infected trees to those frequencies expected if oak mistletoe was 

distributed across potential host tree species at random, I used a chi-square goodness-of-fit test with the function 

chisq.test in R (Caraballo-Ortiz et al. 2017; R Core Team 2021). Expected species-specific frequencies of infected 

trees were weighted by the proportion of BA each species represented in my survey of available hosts. To ensure 

expected frequencies were high enough I only included data on the 25 species with the highest BA.   

I used the observed regional mistletoe-host association between oak mistletoe and sweetgum to examine the 

influence of host availability on such regional patterns. Sweetgum is widespread with regards to habitat and 

geography across the study area (Weakley et al. 2012) and individuals infected with oak mistletoe were frequently 

detected in a variety of forest types in the southeastern region. Despite sufficient effort, such detections were 

absent from portions of the study area north of this region.  

I used a GLM with a Gamma error distribution to model the relationship between sub-plot sweetgum BA and a 

binary categorical predictor representing membership of the respective plot in the southeastern region or 

elsewhere in the study area. I compared this model with a null GLM lacking the region effect using AICc (Table 1; 

Burnham & Anderson 2002). If host availability determines regional oak mistletoe host associations, I expected a 

positive relationship between sub-plot-level sweetgum BA and plot membership in the southeastern region. This 

GLM and model comparison and the analyses described in the remainder of this section were conducted with the 

package AICcmodavg (Mazerolle 2020) within R (R Core Team 2021). 
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Regional variation in the proportion of forested habitat types occupied by either host or mistletoe species 

could increase the potential for avian frugivore behavior and local environmental conditions to play important 

roles in determining regional host associations. I modeled variation in sweetgum occurrence rates with GLMs and 

compared candidate models with AICc (Table 1). The global model included an interaction between habitat type 

and region in their effects on the presence of sweetgum in sub-plots. I ran identical analyses with sub-plot data on 

the occurrence of red maple to compare results for a host used across the study area with results for the regionally 

parasitized sweetgum. Finally, I repeated these analyses with plot-level presence data on oak mistletoe to examine 

evidence for a difference in mistletoe habitat relationships between the southeastern region and the rest of the 

study area. Models of mistletoe occurrence included an additional term representing the effect of plot-specific 

potential host BA.  

 

2.3 RESULTS 

Oak mistletoe habitat relationships 

I detected mistletoe at 38 survey plots on 599 individual trees and 7 host tree species and at 117 ad-hoc sites 

on an additional 23 host tree species; detected host species are listed in the Appendix. Three additional host taxa 

detected at ad-hoc sites were identified to only genus or sub-genus level. Single instances of the shrub Cornus 

stricta Lam. and the liana Ampelopsis arborea (L.) Koehne serving as hosts for oak mistletoe were also detected at 

ad-hoc sites. The mean number of species on region-specific host lists was 12.4 ± 3.2 (mean ± SD) with the most 

diverse list of 16 host species from the inner Coastal Plain between the James and Cape Fear River watersheds. The 

most common host species was Nyssa biflora Walter with a total of 436 infected stems (24.22 ± 81.89 stems/25-m 

radius plot). Disregarding host species, 15.76 ± 57.34 trees were infected across plots. Red maple was parasitized 

at more plots (n = 26) than any other host species.        

The 76 tree species and additional 13 taxa above the level of species detected across the study area are listed 

in the Appendix. The mean basal area of tree stems in sub-plots across the study area was 42.36 ± 27.63 m2ha-1. 

The tree species present at the highest proportion of sub-plots was red maple at 65%. Pinus taeda L. accounted for 

the largest BA across all subplots with a total of 645.83 m2 across 0.96 ha surveyed or 6% of the total sub-plot area. 
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Eighty-five out of 96 sub-plots contained region-specific host species, with a mean host BA in sub-plots across 

the study area of 16.24 ± 22.91 m2ha-1. When regional host associations were unaccounted for, 89 plots contained 

at least one species that served as a host in the study area, and the mean sub-plot-level host stem BA was 19.07 ± 

23.92 m2ha-1. The occurrence rate of oak mistletoe in forested wetland habitat was significantly more positive than 

the occurrence rate in forested upland habitat after accounting for host availability (GLM, Fig. 3). 

 

Oak mistletoe host associations 

Oak mistletoe was not randomly distributed across potential host tree species (χ2 = 585.59, df = 24, P < .001). 

Plot-level data on infected trees were dominated by two host species, with N. biflora and red maple together 

accounting for 97% of such detections. In contrast, these two tree species accounted for 14% and 19% of the total 

BA of potential host tree species across all sub-plots, respectively. Total BA values for the 25 potential host tree 

species with the highest BA are displayed in the Appendix. Remaining findings in this section pertain to 

determining the importance of potential host availability as a driver of observed regional variation in the 

association between sweetgum and oak mistletoe. 

The mean sub-plot-level sweetgum BA was 2.22 ± 2.43 m2ha-1 in the southeastern region and 7.35 ± 12.22 

m2ha-1 across other regions in the study area. Model comparison with AICc gave support to both a GLM of 

sweetgum BA that included only the intercept and a GLM that included a regional effect, with full model selection 

results provided in the Appendix. All candidate models of the occurrence of sweetgum in sub-plots received some 

support when ranked by AICc (Table 2); an interaction between the effects of habitat and a binary predictor 

representing whether a plot was in the southeastern region or not on this response was not strongly supported, 

with the GLM that included this interaction only receiving 12% of the AICc weight. I found more support for a 

relationship between the binary regional predictor described above and sweetgum occurrence, with candidate 

models that included this effect collectively accounting for 62% of the AICc weight and 24% of sub-plots in the 

southeastern region hosting sweetgum relative to 43% of sub-plots across the rest of the study area. Results from 

the ranking by AICc of these same models for red maple, parasitized across the study area, were similar to those for 

the regionally parasitized sweetgum in that an interaction between the effects of habitat and region received 

minimal support, with full model selection results provided in the Appendix. In contrast, such an interaction 



16 
 

 

between the effects of habitat and region on the occurrence of oak mistletoe did receive strong support when 

candidate models were ranked by AICc, as the candidate model that included this interaction in addition to the 

effects of habitat, region, and potential host BA received 92% of the AICc weight (Table 3). Specifically, the best-

supported model of mistletoe occurrence predicted a higher proportion of forested upland plots containing oak 

mistletoe in the southeastern region than in the rest of the study area (Fig. 4). It should be noted that region as a 

main effect appears to be an uninformative parameter in models of oak mistletoe occurrence (Arnold 2010).     

 

2.4 DISCUSSION 

I used plot survey data to examine the role of host availability in determining habitat relationships and regional 

host associations of oak mistletoe in eastern Virginia and North Carolina. I examined a specific regional host 

association that was unlikely to be driven by other factors such as avian frugivore behavior and local 

environmental conditions due to characteristics of the study area and the host tree species. In contrast, my study 

of the relationship between host availability and oak mistletoe habitat relationships left avian disperser foraging 

preferences and habitat-specific variation in environmental conditions as viable alternative drivers of this pattern. 

Concurrent work on this topic has given greater support to abiotic factors such as light availability than to avian 

disperser behavior in determining this phenomenon (Chapter 3, Chapter 4). 

Host availability had previously been proposed as a potential driver of both habitat relationships and host 

associations for oak mistletoe in the eastern United States (Kuijt 2003, Weakley et al. 2012). Preliminary 

observations in the study area showed that some hosts were widespread with regards to both habitat and 

apparent host association regions, making host availability an unlikely factor in determining the distribution of oak 

mistletoe at these scales. Subsequent work presented here is the first, to my knowledge, to formally test the 

relationships between host availability and these phenomena in the eastern United States. The use of data on the 

occurrences of both mistletoe and hosts from plots selected using stratified random sampling made this study 

unique among such investigations in temperate mistletoe systems (Lira-Noriega & Peterson 2014, Usta & Yilmaz 

2021).   

Accounting for regional variation in host use 
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My goal was to quantify the importance of host availability in determining the habitat relationships and 

regional host associations of oak mistletoe, yet the linkage between these two distributional phenomena had to be 

addressed. I thought it unlikely that host availability could drive the observed relationship between oak mistletoe 

and forested wetland habitat in the study area given the ubiquitous nature of some common host species. Without 

accounting for regional variation in host use by oak mistletoe, however, estimates of the relationship between 

host availability and mistletoe occurrence could be severely negatively biased. For instance, a tree species that was 

widespread geographically but parasitized only regionally could be abundant in a habitat type where oak mistletoe 

is rare, leading to the false inference that potential host availability is unrelated to the observed mistletoe habitat 

relationship.  

Regional variation in host use by oak mistletoe has been noted by numerous workers who at a minimum 

overlapped in geographic scope with the study area (Baldwin & Speese 1957, Panvini 1991, Hawkins 2010). Here I 

partly defined host association regions based on physiographic regions due to known differences in plant 

community composition (Weakley et al. 2012). In two cases, the host association regions resulted from further 

splits of physiographic regions to account for shifts in parasitism of widespread tree taxa obvious in the data.   

 

Oak mistletoe habitat relationships 

The results supported the existence of a positive relationship between oak mistletoe occurrence and forested 

wetlands in the study area after accounting for both host availability and regional variation in host usage by oak 

mistletoe. Several factors remain as viable alternatives to host availability as drivers of this habitat association, 

including avian disperser behavior (Lamont & Southall 1982, Martínez del Rio et al. 1996, Aukema 2004, Caraballo-

Ortiz et al. 2017) and local environmental conditions (Norton & Smith 1999, Roxburgh & Nicolson 2005, Mellado & 

Zamora 2014b, Lira-Noriega & Peterson 2014, Tikkanen et al. 2021). Several lines of evidence suggest that 

mistletoe dispersers in the study area freely disperse mistletoe seeds across habitat types, including a lack of a 

relationship between oak mistletoe genetic structure and habitat type (Chapter 3). Mistletoe samples used to test 

for this relationship came from only forested wetland and urban habitats, so I cannot speak to the existence of 

bird-mediated genetic structure across other habitat types.     
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Variation in compatibility between mistletoe and available hosts could drive mistletoe habitat relationships if a 

host-specific mistletoe population is predominant in an area and the preferred host is restricted to a certain 

habitat type (Caraballo-Ortiz et al. 2017). Host compatibility would need to be accounted for in these cases when 

quantifying host availability to study its effect on mistletoe habitat relationships. There is evidence for a potential 

host-specific population of oak mistletoe in the eastern portion of the study area based on a population genetics 

study (Chapter 3), with the existence of a genetically distinct mistletoe population found only parasitizing host 

species in the genus Nyssa. This study also revealed that mistletoe populations found across several regions of the 

study area parasitizing a variety of host tree species were largely admixed.  

The apparent widespread presence of generalist oak mistletoes in eastern portions of the study area makes it 

unlikely that host-specific populations could be driving the observed affinity of oak mistletoe for forested 

wetlands. Host compatibility based on species identity alone should not be a barrier to parasitism of host tree 

species in forested uplands if those species are hosts for generalist mistletoe populations in other habitats. Genetic 

variation among host populations in their susceptibility to mistletoe infection could influence mistletoe 

distribution (Kuijt 1969, May 1971, Panvini 1991, Sallé et al. 1993, Mellado & Zamora 2014b). The presence of such 

variation among hosts and any relationship with habitat type in the study area is an open question, as is the 

presence of predominant host-specific oak mistletoe populations in other portions of its range.  

 

Oak mistletoe host associations 

The results suggest that observed regional variation in the parasitism of sweetgum by oak mistletoe is not 

associated with variation in the availability of sweetgum stems. Furthermore, little support was found for regional 

variation in habitat type occupied by sweetgum, minimizing the likelihood of mistletoe disperser behavior or local 

environmental conditions to act as determinants of this regional host association. Instead, sweetgum was found to 

be more abundant and widespread in regions of the study area where it is not used as a host. Finally, the negligible 

support for a relationship between variation in sweetgum habitat type and host association region was similar to 

support found for such a relationship in red maple, a tree species parasitized across the study area. 

While generalist mistletoes appear predominant among samples from forested wetland and urban habitats in 

the study area (Chapter 3), if host-specific populations are more common in other portions of the range of this 
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mistletoe their host-specificity could determine regional host associations in such areas (Paine 1950, May 1971, 

Clay et al. 1985, Caraballo-Ortiz et al. 2017). Other potential drivers include variation in either local 

microenvironment conditions at scales finer than the habitat types examined here or the phenology of gaseous 

host cues (Randle et al. 2018). 

Surprisingly, results from modeling presented here showed a higher likelihood of mistletoe occurrence in 

forested uplands in the southeastern region where sweetgum is commonly parasitized than across the remainder 

of the study area. In contrast to the lack of interaction between region and sweetgum habitat occupancy, this 

result maintains the potential for regional variation in avian disperser behavior or local environmental conditions 

to determine the observed regional host association (Clay et al. 1985, Norton & Carpenter 1998, Aukema 2004). If 

mistletoe is more common in forested uplands in the region where sweetgum is commonly parasitized, the 

sweetgum individuals in this region may be more prone to mistletoe infection due to avian disperser behavior or 

local environmental conditions specific to forested uplands. For instance, light availability has been proposed as an 

important factor determining mistletoe distributions in some systems (Panvini 1991, Mellado & Zamora 2014b) 

and there is evidence for a significantly positive relationship between light availability and oak mistletoe 

establishment (Chapter 4). If light is more available for mistletoes on sweetgum individuals in forested uplands 

than for such individuals in forested wetlands, the higher prevalence of oak mistletoe in these habitats in the 

southeastern region could make sweetgum trees more likely to be parasitized. The driver of this strongly 

supported interaction between the effects of habitat type and region on mistletoe occurrence in the study area is 

unknown. Increased light availability in forested uplands of the southeastern region due to abiotic factors seems a 

viable possibility.    

 

Summary 

Here I showed that factors other than host availability are responsible for the observed affinity of oak mistletoe 

for forested wetland habitat in eastern Virginia and North Carolina. I avoided potential biases in the estimates by 

accounting for regional variation in host use by oak mistletoe. Evidence to date suggests that variation in local 

environmental conditions is the most likely mechanism driving the distribution of oak mistletoe across different 
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habitats in the study area. The existence of regional variation in host susceptibility remains an untested yet viable 

alternative hypothesis.  

Similarly, I found that variation in host availability cannot explain regional variation in use of the widespread 

tree sweetgum by oak mistletoe. While several alternative hypotheses remain to be tested, my findings showed a 

regional shift in mistletoe distribution across habitat types that was related to a regional shift in parasitism of 

sweetgum. A greater occurrence of oak mistletoe in forested uplands in the southern region of the study area 

could make sweetgum individuals more suitable hosts in this region through changes in habitat-specific disperser 

behavior or abiotic conditions. Work remains to determine if this relationship between habitat occupancy of oak 

mistletoe and parasitism of sweetgum is restricted to the area examined in this study. Future studies of 

mechanisms driving regional variation in the use of widespread host species by generalist parasitic plants could 

include variation in parasite habitat relationships as a viable hypothesis and reveal the generality of this 

phenomenon.  

 

 

 

 

 

 

 

 

 

 

 



21 
 

 

Table 1  Descriptions of models of variation in Liquidambar styraciflua basal area (BA) at sub-plots and the 
occurrence of L. styraciflua, Acer rubrum, and oak mistletoe at sub-plots. “Y” indicates independent variables for 
which effects were included in at least some models of the respective response rate, while “N” indicates such 
variables that were not included in any models of that response 

Variable Response 

Liquidambar 

styraciflua BA 

Liquidambar 

styraciflua 

occurrence 

Acer rubrum 

occurrence 

Oak mistletoe 

occurrence 

Region (southeastern region 

or other region in study area) 

Y Y Y Y 

Habitat (forested wetland or 

forested upland) 

N Y Y Y 

Region*habitat (interaction) N Y Y Y 

Basal area (BA) of potential 

host species in sub-plot 

N N N Y 

 
 
 
 
Table 2  Alternative generalized linear models for the relationships between Liquidambar styraciflua occurrence at 
plots and habitat type and region as ranked by AICc 

Variables included in model K AICc Delta AICc AICc weight Cumulative weight LL 

Intercept + region 2 129.53 0 0.33 0.33 -62.7 

Intercept (null) 1 130.04 0.51 0.26 0.59 -64 

Intercept + region + hab 3 130.81 1.27 0.17 0.76 -62.27 

Intercept + hab 2 131.54 2.01 0.12 0.88 -63.71 

Intercept + region + hab + interaction 4 131.58 2.05 0.12 1 -61.57 
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Table 3  Alternative generalized linear models for the relationships between mistletoe occurrence at plots and 
region, habitat, and host availability as ranked by AICc 

Variables included in model K AICc Delta 
AICc 

AICc 
weight 

Cumulative 
weight 

LL 

Intercept + region + hab + interaction + 
BA 

5 77.16 0 0.92 0.92 -33.25 

Intercept + hab + BA 3 82.93 5.77 0.05 0.97 -38.34 

Intercept + region + hab + BA 4 83.85 6.69 0.03 1 -37.71 

Intercept + BA 2 93.43 16.27 0 1 -44.65 

Intercept + region + BA 3 94.6 17.44 0 1 -44.17 

Intercept + region + hab + interaction 4 100.49 23.33 0 1 -46.03 

Intercept + hab 2 101.73 24.57 0 1 -48.8 

Intercept + region + hab 3 103.7 26.54 0 1 -48.72 

Intercept (null) 1 130.93 53.77 0 1 -64.44 

Intercept + region 2 132.99 55.83 0 1 -64.43 
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Fig. 1  Locations of survey plots in forested upland and forested wetland habitats 
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Fig. 2  Locations of 125 sites that hosted mistletoe and were selected ad hoc across the study area 
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Fig. 3  Posterior distributions of predicted probabilities of mistletoe occurrence in forested upland and forested 
wetland habitats  
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Fig. 4  Predicted rates of oak mistletoe occurrence from the top model of variation in mistletoe presence in plots 
across different habitats and regions as ranked by AICc; error bars represent 95% confidence intervals 
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CHAPTER 3 

THE DISTRIBUTION OF OAK MISTLETOE [PHORADENDRON LEUCARPUM (RAF.) REVEAL & M. C. JOHNST.] IS 

MORE RESTRICTED WITH REGARDS TO HABITAT TYPE THAN THAT OF ITS AVIAN FRUGIVORE DISPERSERS 

 

3.1 INTRODUCTION 

The dispersal of propagules is critical to maintaining and structuring plant populations and communities 

(Schupp et al. 2010), yet its influence in determining plant distributions relative to other factors remains 

controversial (Levine & Murrell 2003, Alexander et al. 2012, Foster et al. 2011). Results from many seed 

augmentation experiments in the field suggests the presence of seed limitation, yet overall low seedling 

establishment maintains the likelihood that post-dispersal factors are more influential in determining plant 

distributions (Clark et al. 2007). Understanding the relative roles of dispersal and local environmental conditions in 

determining plant distributions is important for predicting the spread and persistence of plant species (Renne et al. 

2001). 

The visibility of dispersers and discrete establishment sites in many mistletoe-frugivore systems make such 

systems well-suited for testing hypotheses about determinants of plant distributions (Overton 1994, Levine & 

Murrell 2003). Despite this, the relative importance of environmental conditions, avian frugivore behavior, and 

host tree availability in determining mistletoe distributions remains unclear in many cases (Panvini 1991, Kuijt 

2003, Aukema 2004, Caraballo-Ortiz et al. 2017). I was interested in determining what drives variation in oak 

mistletoe occurrence among forested habitat types, a distributional pattern I henceforth refer to as a habitat 

relationship. 

In the Coastal Plain and Piedmont regions of Virginia and North Carolina in the southeastern United States (US), 

the study area of interest, oak mistletoe [Phoradendron leucarpum (Raf.) Reveal & M. C. Johnst.] is more common 

in forested wetlands of the Coastal Plain than in other forested habitats (Weakley et al. 2012) despite the 

widespread occurrence of potential host tree species such as red maple (Acer rubrum L.). Host trees available in 

urban areas under a variety of development intensities are also commonly parasitized in the region. Oak mistletoe 

is a food resource for avian frugivores wintering in the study area, and an understanding of factors responsible for 
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current and future distribution of mistletoe is of interest for avian conservation (Watson 2001, Aukema & Martínez 

del Rio 2002, Dickinson & McGowan 2005, Watson & Herring 2012).  

Habitat choices of avian seed dispersers have been cited as an influential factor determining distributions of 

mistletoe species (Martínez del Rio et al. 1996, Aukema 2004, Usta & Yilmaz 2021). While winter habitat 

relationships of avian frugivores that disperse oak mistletoe seeds are poorly known (Panvini 1991, Weinkam 

2013), it is possible that variation in fruit availability drives these species to spend more time foraging in forested 

wetlands (Wigley & Roberts 1994, Wakeley & Roberts 1996, Usta & Yilmaz 2021) and urban areas (Thompson & 

Poindexterss 2005) than in other habitats (Renne et al. 2002). Differential seed dispersal rates among habitats 

could drive observed habitat relationships of oak mistletoe in the region of interest. 

Weakley et al. (2012) suggested that regional silvicultural practices may reduce the suitability of upland forests 

relative to forested wetlands as oak mistletoe habitat by affecting the availability and quality of host trees. If avian 

dispersers choose hosts and non-hosts equally for perching, a positive relationship between host density and 

dispersal efficiency should exist for mistletoes in general (Overton 1994). While a relationship between oak 

mistletoe occurrence and forested wetland habitat was found even after accounting for host tree availability 

(Chapter 2), variation among habitats in local environmental conditions that affect host tree quality remains a 

viable mechanism driving such relationships (Roxburgh & Nicolson 2005, Mellado & Zamora 2014b, Lira-Noriega & 

Peterson 2014). I was interested in testing an alternative hypothesis that differential seed dispersal rates by avian 

frugivores across different habitat types is the most influential factor determining observed habitat relationships of 

oak mistletoe.  

Presence-absence data on regional mistletoe dispersers identified using camera traps and other generalist 

frugivores from repeated surveys across a variety of forested habitat types were analyzed using occupancy models 

(MacKenzie et al. 2002) to estimate habitat relationships while accounting for imperfect detection rates. A 

Bayesian analysis allowed me to quantify similarities between estimates of habitat relationships for oak mistletoe 

and mistletoe dispersers (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). Such comparisons tested the hypothesis 

that disperser behavior is an important driver of oak mistletoe distributions. 

Understanding the distribution of mistletoe species that obligately depend on birds for seed dispersal has the 

potential to increase knowledge on avian behavior and habitat use (Stiles 1982, Aukema 2004, Mellado & Zamora 
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2014b). The successful spread of the invasive tree Sapium sebiferum (L.) Roxb. in the southeastern US has been 

partially attributed to variation among regions and habitats in avian disperser communities (Renne et al. 2002). 

Matula et al. (2015) interpreted the higher prevalence of the mistletoe Loranthus europaeus Jacq. on larger trees 

as a signal of the territorial behavior of the mistle thrush (Turdus viscivorus), an important disperser of mistletoe 

seeds in that system.  

If avian disperser behavior is largely responsible for limited gene flow among populations of a mistletoe, the 

genetic structure of the mistletoe could be interpreted as a signal of otherwise largely cryptic patterns of avian 

disperser distributions (Loiselle et al. 1995, Aukema 2004, Mellado & Zamora 2014a). The presence of genetic 

structure in oak mistletoe associated with habitat types could indicate the existence of habitat-specific frugivore 

populations that would not be apparent in survey data of unmarked birds (Clay et al. 1985, Hamrick et al. 1993). If 

such habitat-specific winter populations exist, seemingly widespread avian species could play a role in determining 

oak mistletoe habitat relationships by limiting dispersal between different forested habitat types. Here I used 

genetic markers and oak mistletoe samples from different habitats in the Coastal Plain portion of the study area to 

look for a signal of such dispersal limitation between habitats. 

 

3.2 METHODS 

Avian frugivore occurrence sampling and analysis 

Stratified random sampling was used to select 96 circular plots with 25-m radii to survey repeatedly for the 

presence or absence of mistletoe shrubs and avian frugivore species during the winter seasons (Dec–Mar) of 2015–

2016 to that of 2019–2020 (Fig. 5). These plots were in the Coastal Plain and Piedmont regions of Virginia and 

North Carolina, with forested wetlands (54 plots) and all other forested habitats (42 plots) serving as two strata. I 

surveyed plots in winter when oak mistletoe provides fruits. Details of surveying plots for the occurrence of oak 

mistletoe and related variables and the analysis of the resulting presence-absence data were reported elsewhere 

(Chapter 2).  

Repeated surveys for avian frugivores consisted of 10-min point counts conducted between official sunrise and 

11:30 hrs EST during which all avian species detected using the ground or foliage within the plot were recorded. All 

plots were surveyed 2–4 times within a winter season (Dec–Mar). The subset of plots to be surveyed during a 
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respective winter were chosen at random from the total set of active plots. I disregarded some date-specific 

presence-absence data on avian species under certain conditions to ensure my estimates reflected winter bird 

distributions. I filtered such data when 1) the avian species was considered to breed in the study area, 2) the 

breeding season of the avian species overlapped with the survey date, and 3) known habitat relationships of the 

species differed markedly between its breeding and non-breeding season. I referred to LeGrand et al. (2021) and 

Rottenborn & Brinkley (2007) for information on avian phenology and distribution in the study area. 

Avian occurrence data that did not meet the above criteria were analyzed with a community occupancy model 

in a Bayesian framework (Dorazio & Royle 2005). As with single-species occupancy models (MacKenzie et al. 2002, 

2006), community models use patterns of detection of a species from repeat surveys to account for imperfect 

detection and avoid detection-related biases in other parameter estimates. This assumes the occurrence state of 

the species is constant during the survey period; this assumption may be partially relaxed with shifts in 

interpretation of model parameters (Kendall 1999, MacKenzie 2005, MacKenzie et al. 2006, Kéry & Schaub 2012). 

Community models extend the estimation of parameters of interest to species with relatively little data by sharing 

information across similar species through the treatment of species as random effects (Dorazio & Royle 2005). 

These models have been shown to retain the flexibility necessary to estimate species-specific relationships 

between occurrence and explanatory variables (Kéry & Royle 2008).  

The models I used allowed for the sharing of information across forest bird species and included species-

specific effects of habitat type (forested wetland versus forested upland) on occurrence rate and both date and the 

quadratic effect of date on detection probability (Flanders et al. 2015). I included year-specific random intercepts 

in species-specific sub-models of detection rate to account for interannual variation in avian species abundance, 

acknowledging the relationship between abundance and detection probability (Royle & Nichols 2003). The species-

specific effect of habitat on occurrence rate was considered statistically significant if 95% credible intervals for 

habitat-specific intercept parameters did not overlap. I used the package R2WinBUGS (Sturtz et al. 2005) in R 4.1.2 

(R Core Team 2021) to estimate posterior distributions in WinBUGS (Lunn et al. 2000) with uninformative prior 

distributions for all parameters and 3 Markov chain Monte Carlo (MCMC) chains run for 100,000 iterations with a 

burn-in of 20,000 and thinning by 4. Convergence for all parameters was assessed using trace plots and R-hat 

values (Gelman & Hill 2007). 



31 
 

 

The quantification of similarities between estimates of habitat relationships for oak mistletoe and for mistletoe 

seed dispersers required results from the previous fitting of a generalized linear model to mistletoe occurrence 

data from the same 25-m radius plots described above (Chapter 2). Specifically, I calculated the proportion of 

samples from the posterior distribution of the effect of wetland habitat on the occurrence of mistletoe that were 

greater than samples from the respective posterior distributions of such effects on the occurrence of a subset of 

avian species detected at plots (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). If this proportion was less than 

0.95, I considered the two estimates to not differ statistically. I selected a subset of avian species that represented 

potential mistletoe seed dispersers, including four frugivorous species detected eating oak mistletoe fruits in the 

region with remote cameras [eastern bluebird (Sialia sialis), cedar waxwing (Bombycilla cedrorum), gray catbird 

(Dumetella carolinensis), and tufted titmouse (Baeolophus bicolor)]. The other 15 avian species for which 

comparisons were made were considered frugivores based on a greater than 25% proportion of fruit in reported 

winter diets (Billerman et al. 2020). Forest bird species detected were categorized as frugivores or non-frugivores 

as listed in the Appendix.  

 

Tissue sampling, genotyping, and molecular analyses  

I used an extendable pole pruner to sample leaf tissue from accessible oak mistletoe shrubs (n = 517) at 

locations in forested wetland and urban habitats across eastern Virginia and North Carolina from January to 

December 2019 (Fig. 6); due to difficulties locating accessible mistletoe shrubs in forested wetlands in northern 

Virginia I also sampled from one wetland and one urban location in southeastern Maryland. I sampled 

approximately 20 mistletoes at each sampling location (mean = 19.88, SD = 0.59) from a total of 19 different host 

species; a list of these host species is in the Appendix. Five additional host taxa were identified to only the genus or 

sub-genus level. To test the hypothesis that dispersal limitation restricted mistletoe gene flow among habitat 

types, I chose paired sampling locations such that each location in urban habitat was as close as possible 

geographically to one sampling location in forested wetland habitat. 

I grouped sampling locations based on geographic region: inner Coastal Plain south of the James River (9 

locations), outer Coastal Plain south of the James River (13 locations), and Coastal Plain north of the James River (4 

locations). These regions were based on observed geographic host associations as in a previous study of 
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determinants of regional variation in host use (Chapter 2). Samples from locations in the same habitat type and 

region were treated as coming from the same population (mean = 86.17 samples per habitat within region, SD = 

42; Table 5).  

Leaf tissue samples were submitted to CD Genomics (Shirley, NY) to identify polymorphic microsatellite loci 

across individuals. First, a whole genome sequence for the non-model organism oak mistletoe was generated. A 

NEBNextR UltraTM DNA Library Prep Kit for Illumina (NEB, USA) was used to develop a library for DNA fragments 

from a sonicated 0.5 µg sample that were ligated to full-length adaptors for Illumina sequencing. Sizes of 

fragments purified using the AMPure XP system were quantified using the Agilent2100 Bioanalyzer and real-time 

PCR and the library was sequenced using Illumina NovaSeq6000 PE150. This library was searched for fragments 

with greater than five repetitions of a 3–5 base pair repeat unit using MISA (Beier et al. 2017). Primers were 

developed for such fragments using PRIMER3 with constraints of a minimum melting temperature of 55°C and 

optimal melting temperature of 57°C. 

Potential markers were tested for amplification across 4 samples resulting in 46 loci that were screened for 

polymorphism using capillary electrophoresis and 8 mistletoe samples from across the study area. Eight markers 

(Table 4) were determined to be polymorphic and were genotyped across all samples. I used GenAlEx (Peakall & 

Smouse 2006, 2012) to format the fragment length data for analysis and GENEPOP (Rousset 2008) to test for 

Hardy-Weinberg equilibrium (HWE; dememorization 10000, batches 100, iterations per batch 5000), the presence 

of null alleles, and linkage disequilibrium. Because of significant pair-wise linkage disequilibrium, the marker 

c17395 was dropped; other markers were without significant pair-wise linkage at the 1% level after Holm-

Bonferroni corrections. 

Fragment length data from two population and locus combinations showed significant deviations from HWE 

due to heterozygote deficiencies (Table 5), while estimated null allele frequencies across all such combinations 

were low. Yule et al. (2016) found similar HWE deviations and null allele frequencies across populations of desert 

mistletoe (Phoradendron californicum Nutt.) using data from 10 microsatellite markers. As in that study, I failed to 

find a significant relationship between estimates of FIS and the quantity of missing data from each population and 

locus combination, with such “blank” data interpreted as homozygotes under the hypothesis that null alleles are 

present (Dharmarajan et al. 2011). I also treated genotyping results as Bernoulli random variables with missing 
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data or “blanks” treated as successes and ran locus-specific generalized linear models with a logit-link function to 

test for significant positive relationships between FIS estimates and missing data rates. After adjusting for multiple 

tests with a Holm-Bonferroni correction, none of the seven locus-specific relationship estimates were statistically 

significant at alpha = .05. I concluded deviations from HWE were likely due to genetic structure within populations, 

also known as Wahlund effects, instead of the presence of null alleles (Dharmarajan et al. 2011, Yule et al. 2016). 

I used the Bayesian clustering program STRUCTURE version 2.3.4 to estimate sample-specific proportions of 

ancestry from genetic populations under alternative hypotheses about the number of distinct populations present 

across all samples (K; Pritchard et al. 2000). I varied K from 1 to 10 and ran STRUCTURE independently 20 times 

under each hypothesis with 1x106 iterations per run and the first 1x105 iterations treated as burn-in values. I used 

Structure Harvester (Earl & vonHoldt 2012) to calculate the delta K statistic of Evanno et al. (2005) and selected the 

value of K best supported by the genetic data. Ancestry proportion estimates from independent runs of 

STRUCTURE under the value of K that optimized the delta K statistic of Evanno et al. (2005) were aligned optimally 

using the program CLUMPP (Jakobsson & Rosenberg 2007) and the Greedy algorithm with 1x104 repeats. The 

package pophelper (Francis 2017) in R 3.6.2 was used to plot and label resulting optimized sample-specific ancestry 

proportions according to host association region, collection site, and host species.   

A hierarchical analysis of molecular variance (AMOVA, Excoffier et al. 1992) was used to calculate the 

proportion of genetic variation aligned with habitat type nested within host association region. Such a correlation 

between habitat type and genetic structure could be a signal of dispersal limitation mediated by avian frugivore 

behavior (Clay et al. 1985, Hamrick et al. 1993). I ran a separate AMOVA to determine the degree to which oak 

mistletoe genetic variation could be attributed to variation in host species under the hypothesis that host races 

exist (May 1971, Clay et al. 1985). Whether examining genetic variation across habitats or host species nested 

within region, I used Arlequin version 3.5 (Excoffier & Lischer 2010) to quantify such structure using both FST-like 

differences in alleles and RST-like differences in fragment length.   

A network analysis in EDENetworks version 2.18 (Kivelä et al. 2015) was used to visualize genetic relatedness 

among oak mistletoe populations without the injection of “a priori” information based on hypotheses about 

genetic isolation by habitat or host species. This software used pair-wise FST values to represent connectivity 

between site-specific and host-specific mistletoe populations and then to derive a minimum spanning tree. 
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EDENetworks was also used to visualize the resulting tree and color code population nodes based on habitat type 

or geographic region. To check for variation in clustering identified among populations I recreated such a minimum 

spanning tree 10 times in EDENetworks (Ashley et al. 2015). 

 

3.3 RESULTS 

Modeling avian frugivore habitat relationships 

I detected the presence of 58 wintering forest bird species, 19 of which were frugivores, and analyzed 

occurrence data using a community occupancy model to estimate species-specific relationships between forested 

habitat type and occupancy while accounting for the imperfect detection of species. I found significantly positive 

relationships between forested wetland habitat and occupancy for six species including the rusty blackbird 

(Euphagus carolinus), a species of conservation concern (Greenberg & Matsuoka 2010), and two other frugivores: 

gray catbird (Dumetella carolinensis) and yellow-rumped warbler (Setophaga coronata; Table 6). Negative 

relationships between forested wetland habitat and occupancy were estimated for three avian species including 

the locally uncommon red-headed woodpecker (Melanerpes erythrocephalus) and the frugivorous tufted titmouse 

(Baeolophus bicolor). Posterior distributions of predicted occurrence rates of these nine avian species in forested 

upland and forested wetland habitat are shown in the Appendix. I estimated statistically significant relationships 

between date and detection probability for 10 species and quadratic effects of date on detection for three species 

(Table 6). Detection rates were highly variable across species and extremely low for some species, emphasizing the 

need to account for imperfect detection when estimating habitat relationships and comparing occupancy rates 

across forest bird species wintering in the southeastern US. 

I did not find statistically significant positive relationships between forested wetland habitat and occupancy for 

either cedar waxwing or eastern bluebird, the two principal dispersers of oak mistletoe fruits. Posterior 

distributions of predicted occurrence rates of these two avian species in forested upland and forested wetland 

habitat are shown in the Appendix. Comparisons between estimates of this habitat relationship for avian 

frugivores and for oak mistletoe revealed 9 potential disperser species for which the effect was significantly lower 

than for mistletoe, including eastern bluebird (Fig. 7), suggesting that these dispersers are more widespread with 

regards to habitat than oak mistletoe. I found no significant differences between the estimated effect of forested 
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wetland habitat for mistletoe and for the remaining 10 frugivore species, including cedar waxwing. Probabilities of 

differences between estimates of the relationship between forested wetland habitat and occurrence for oak 

mistletoe and avian frugivore species, along with posterior distributions of these effects, are given in the Appendix. 

 

Population genetics analyses 

A value of K = 4 was the optimal delta K (Evanno et al. 2005), suggesting the presence of four distinct genetic 

populations across the samples. Values of delta K calculated across different hypothesized numbers of oak 

mistletoe populations are shown in the Appendix. Optimized ancestry proportion estimates suggested many 

individuals are admixed (Figs. 8, 9, 10), with groupings of individuals strongly assigned to a particular cluster not 

aligned with host association regions or habitat type in most cases (Figs. 8, 10). Ancestry proportions for oak 

mistletoe samples grouped by host association region are shown in the Appendix. One exception was individuals 

from host association regions north of the James River (Fig. 10), many of which were strongly assigned to the same 

cluster. A distinct group of individuals strongly assigned to the same cluster was aligned with host species in the 

genus Nyssa L. regardless of habitat or region (Fig. 9), which I refer to as the “Nyssa” cluster below. 

I verified the consistency of these patterns in cluster assignment by examining optimized ancestry proportion 

estimates from runs of STRUCTURE under alternative hypotheses about the number of genetic populations in 

existence. Such estimates from runs of STRUCTURE with K = 2 and K = 3 both maintained the existence of a 

genetically distinct group of mistletoes parasitizing Nyssa spp. I saw a decrease in the strength of the assignment of 

individuals from the northernmost host association region to the same cluster under these alternative hypotheses.  

An additional STRUCTURE analysis was conducted to both further examine the genetic similarity of mistletoes from 

the northernmost host association region and to check for hierarchical genetic structure at a level lower than that 

identified in the original analysis (Evanno et al. 2005). This second analysis used identical parameters as previously 

described but only included individuals whose estimated ancestry in the “Nyssa” cluster was less than 0.65. I failed 

to find support for a value of K greater than 1 using the delta K method of Evanno et al. 2005 when including only 

those samples outside of the “Nyssa” cluster; the values of delta K from these STRUCTURE runs are displayed in 

the Appendix. Across results from runs with different K values, this analysis suggested that all included individuals 

were largely admixed. 
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Results from AMOVA analyses supported the association between oak mistletoe genetic structure and host 

species revealed in patterns of ancestry proportions estimated by STRUCTURE. The proportion of genetic variation 

explained by host association region was consistently low across all models, as was the case for such variation 

explained by habitat type within host region (Table 7). In contrast, when genetic differences were calculated based 

on allele length, variation in host species within host region accounted for 10% of overall genetic variation. Further 

support for these patterns was provided by the shape of the minimum spanning trees created in EDENetworks and 

included in the Appendix. Links on these trees showed clustering among samples collected off hosts in the genus 

Nyssa, irrespective of geography. These results suggest that relatedness among other mistletoe samples is 

independent of habitat type or host association region. 

 

3.4 DISCUSSION 

Here I used survey data on the occurrence of avian species coupled with patterns of mistletoe genetic structure 

to show that dispersal limitation is unlikely to determine habitat relationships of oak mistletoe in the study area. 

Similarly, analyses of mistletoe occurrence data confirmed the affinity of oak mistletoe for forested wetland 

habitat in the study area even after accounting for host availability (Chapter 2). I found a relationship between 

light availability and oak mistletoe establishment in a separate planting study; these findings collectively suggest 

that local environmental conditions may be the most important factor driving oak mistletoe habitat relationships 

in the study area (Clark et al. 2007). 

   

Lack of evidence for bird-mediated genetic isolation by habitat 

The processes of seed dispersal and pollen dispersal are responsible for the transfer of genes between plant 

populations (Loveless & Hamrick 1984, Fenster 1991), thus playing important roles in determining the genetic 

structure of populations (Jordano et al. 2007). Pollen dispersal in oak mistletoe is likely mediated by small insects 

(Panvini 1991) and so can be expected to contribute little to gene flow between populations and sub-populations 

due to small movement ranges of such pollinators (Loveless & Hamrick 1984). However, seed dispersal rates and 

distances are known to vary widely from vector to vector (Jordano et al. 2007) and, in plants with animal-dispersed 

seeds, animal behavior can play a large role in determining gene flow between populations and sub-populations 
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(Westcott et al. 2005). Given the dependence of oak mistletoe individuals on frugivorous birds for seed dispersal in 

the southeastern US, information on the genetic structure of mistletoe populations in the region could inform on 

the behavior of these avian dispersers and their role in determining mistletoe distributions (Loiselle et al. 1995, 

Aukema 2004). 

Two large-scale genetic analyses have been performed across substantial portions of the range of oak 

mistletoe. Panvini (1991) used allozyme variation to study genetic structure in populations across the southeastern 

US, with Fst estimates suggesting genetic isolation punctuated by long-range bird-mediated dispersal events. 

Hawkins (2010) used microsatellites to test the validity of four subspecies proposed across the range of oak 

mistletoe. Results of this range-wide analysis largely agreed with Panvini (1991) in terms of genetic differentiation 

and admixture between populations as shown by Fst estimates. Hawkins (2010) also tested the isolation by distance 

hypothesis (Wright 1943) using microsatellite data and failed to find strong support. Work presented here was a 

valuable extension to these previous studies as it looked specifically at correlations between oak mistletoe genetic 

structure and both habitat type and host species at an intermediate geographic scale (Aukema 2004).  

The patterns of oak mistletoe genetic structure that I found did not show a signal of bird-mediated genetic 

isolation by habitat. While I failed to find support for the hypothesis that habitat specificity of mistletoe dispersers 

was driving oak mistletoe habitat relationships in the region, I did see a genetically distinct cluster of samples that 

parasitized hosts in the genus Nyssa. The potential barrier to gene flow between oak mistletoes on Nyssa spp. and 

those parasitizing other host species is unclear. 

 

Relationship between genetic structure and host species 

Regional variation in the parasitism of potential host species by oak mistletoe has been documented in the 

study area (Baldwin & Speese 1957, Panvini 1991, Hawkins 2010), with the existence of genetically distinct host 

races proposed as a potential driver of such variation in other portions of its range (May 1971, Clay et al. 1985). 

Results from the oak mistletoe population genetics work of Panvini (1991) left the possibility for the existence of 

host races open. A clustering analysis with ISSR marker data from oak mistletoe samples collected from a mixed-

host population in Texas failed to reveal patterns indicative of host races (Randle pers. comm.). In contrast, I found 
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a relationship between host species and genetic structure among oak mistletoe samples in the study area, 

specifically a distinct cluster of samples collected from hosts in the genus Nyssa. 

The apparent lack of gene flow between oak mistletoes parasitizing Nyssa spp. and those parasitizing other 

host species in the study area is likely not caused by avian disperser behavior. There is no phenological overlap in 

the fruiting of oak mistletoe and any host species that offer fleshy fruits in the study area (Weakley et al. 2012). 

Thus, unlike in other systems (van Ommeren & Whitham 2002, Kuijt 2003, Carlo & Aukema 2005, Caraballo-Ortiz 

et al. 2017), there should be no resource-driven variation in attractiveness of potential host trees to generalist 

avian frugivores. Similarly, variation in attractiveness of hosts to avian dispersers based on host habitat 

preferences seems unlikely, as there is considerable overlap in habitats used by tree species hosting sampled 

mistletoes shown to differ genetically (Weakley et al. 2012).  

Identification of an isolating mechanism strong enough to drive the formation of an oak mistletoe host race 

may require consideration of disperser communities and phenology in other portions of the range of this 

mistletoe. However, the maintenance of restricted gene flow between oak mistletoe populations parasitizing hosts 

in the genus Nyssa and those parasitizing other host species could be partially achieved through barriers to pollen 

dispersal as suggested by data in Yule et al. (2016) to explain similar genetic structure in P. californicum. This effect 

could be exacerbated if rates of between-tree seed dispersal are low in the system studied here, as were the rates 

used to parameterize a mistletoe metapopulation model able to simulate the distribution of the mistletoe 

Phrygilanthus sonorae Standl. (Overton 1994). Genetic isolation could also be achieved through pollen limitation 

coupled with differentiation such that the progeny of mistletoes on hosts in the genus Nyssa enjoy the highest 

establishment rates on Nyssa spp. hosts. This latter mechanism was partially shown for putative oak mistletoe host 

races by workers in and near Texas (May 1971, Clay et al. 1985).  

 

Avian frugivore habitat relationships 

Field studies of relationships between distributions of frugivores and mistletoes have historically failed to 

account for imperfect detection, with repeat surveys (Martínez del Rio et al. 1996, van Ommeren & Whitham 

2002), spot-mapping (Bennetts et al. 1996), or presence-only datasets (Lira-Noriega & Peterson 2014) used to 

make inference about bird distributions. The use of a community occupancy model to estimate habitat 
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relationships of oak mistletoe dispersers was novel as it formally accounted for imperfect detection, revealing low 

and variable detection rates capable of biasing such parameter estimates if unaccounted for (MacKenzie et al. 

2002, Tyre et al. 2003, Kéry et al. 2008, Ruiz-Gutiérrez et al. 2010). I know of no other correlative studies examining 

relationships between mistletoe distributions and that of their avian dispersers conducted at as large a geographic 

scale as in this study.  

The analysis of survey data on avian occurrence revealed that only three frugivores showed a positive 

relationship between occupancy and forested wetland habitat, the preferred habitat of oak mistletoe in the study 

area (Chapter 2), with a negative estimate for this relationship found for the frugivorous tufted titmouse. To 

formally test this lack of coupling between habitat relationship estimates for oak mistletoe and for avian 

dispersers, I quantified overlap in posterior distributions of these parameter estimates. Such distributions for 8 out 

of the 19 frugivore species detected, including one of two principal oak mistletoe seed dispersers (eastern 

bluebird), showed a significant lack of overlap with the posterior distribution of the positive effect of forested 

wetland habitat on oak mistletoe occurrence. These results suggest that factors other than avian disperser 

behavior are most important in driving the association between oak mistletoe and forested wetland habitat.  

A limited role of dispersal limitation in determining plant distributions has been shown for many plant species 

(Clark et al. 2007), including mistletoes at the scale of the range of a species (Tikkanen et al. 2021). As in this study, 

Norton & Smith (1999) concluded that disperser behavior was unlikely to drive variation in mistletoe infection 

rates between forested habitats, in contrast to studies attempting to explain variation in mistletoe occurrence 

between forested and open habitats where avian behavior was deemed more important. Another similarity was 

the presence, albeit at low occurrence rates, of mistletoe in a less preferred forested habitat type. Norton & Smith 

(1999) used this limited presence to infer that at least some dispersal must be occurring between habitats. I could 

similarly interpret the presence of oak mistletoe in forested uplands as evidence for some amount of dispersal into 

this habitat type, especially when coupled with the lack of evidence for oak mistletoe genetic isolation across 

habitat types in the study area.  

Despite this evidence for oak mistletoe gene flow across habitat types, infrequent dispersal between trees 

could exacerbate the effects of habitat-specific variation in establishment rates on mistletoe habitat relationships 

(Reid 1989, Reid et al. 1995). I considered the cedar waxwing and eastern bluebird as the two principal dispersers 
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of oak mistletoe fruits in the study area based on frugivory detections. The cedar waxwing is considered an 

effective seed disperser in general (Labbé & King 2020) and for mistletoes (Overton 1994), yet its flocking behavior 

could drive limited between-tree dispersal in oak mistletoe (Labbé & King 2020). While eastern bluebird behavior 

varies seasonally (Gowaty & Plissner 2020), individuals observed foraging on oak mistletoe fruits in the study area 

in winter also exhibited flocking behavior. Despite the widespread distribution of avian frugivores and lack of 

evidence for cryptic habitat specificity in the study area, limited seed dispersal between host trees by these 

dispersers could still play some role in maintaining oak mistletoe habitat relationships primarily driven by other 

factors.  

 

Future research 

I failed to find evidence for genetic isolation between oak mistletoe populations from forested wetlands and 

urban areas, both habitat types where the parasite is common in the study area. Samples are needed from the 

limited mistletoe presence in forested uplands to fully understand what is driving low rates of mistletoe 

occurrence in this habitat type. I assume analyses with such samples would result in patterns of genetic structure 

like those shown here. However, the potential existence of a genetically distinct group of mistletoes restricted to 

forested uplands could provide evidence for cryptic habitat specificity by avian seed dispersers. 

Similarly, in this study, sampling for population genetics analyses occurred in the Coastal Plain region of Virginia 

and North Carolina, but oak mistletoe also occurs in the Piedmont region of the study area. The inclusion of oak 

mistletoe samples from the Piedmont is needed to test for the presence of genetic isolation by habitat in that 

region. If present, the genetic isolation of distinct oak mistletoe populations in forested uplands in the Piedmont or 

elsewhere could be maintained if mistletoes from populations inhabiting other habitat types were unable to 

invade these habitats due to local environmental conditions, such as low light availability in denser stands (Matula 

et al. 2015, Usta & Yilmaz 2021). 

An understanding of the geographic extent of the potential cryptic host race identified here would require 

sampling of oak mistletoes from different host species across the range of the parasite. If detected beyond the 

study area, subsequent analyses could reveal the most likely geographic origin for genetically distinct oak 

mistletoes parasitizing Nyssa spp. (Hawkins 2010). The identification of such a location could provide insight into 
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the factors responsible for the lack of gene flow between oak mistletoes on trees in the genus Nyssa and on other 

host species. 

Differentiation of host races can lead to physiological adaptations such that establishment on the preferred 

host species is significantly higher than on other host species (May 1971, Clay et al. 1985). Such specialization can 

induce further genetic isolation and the maintenance of host races, although in stands of mixed host species other 

barriers to hybridization due to pollen dispersal are needed (Clay et al. 1985). Thus, given the genetic clustering of 

individuals collected from Nyssa spp. in the study area, a straightforward extension of my work is a common 

garden planting experiment to test for significant variation in establishment across host species (May 1971, Clay et 

al. 1985).  

 

Conclusion 

Host availability could drive mistletoe habitat relationships if a mistletoe race restricted to a habitat-specific 

host is the predominant mistletoe in an area. In contrast, in the study area, generalist oak mistletoes are 

widespread and I have shown the affinity of oak mistletoe for forested wetland habitat to be independent of host 

availability (Chapter 2). Results described here suggest that this mistletoe habitat relationship is also largely 

independent of avian disperser behavior, leaving local environmental conditions as the most likely driver of this 

pattern.  
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Table 4  Eight polymorphic microsatellite loci and repeat motifs, primer sequences, and specific melt temperatures 

ID SSR Forward primer (5’-3’) Tm(°C) Reverse primer (5’-3’) Tm(°C) Size 

(bp) 

c14652 (TGG)6 AATAAGCTCCAAAATTACGCTC 56.88 CAATATGCAAGGGAAGGTATG 57.15 140 

c15116 (CGT)7 AAGTTCTCGTACTGCTTGGTG 57.16 TAGTAGAAGGTCTCCACCTTGG 57.49 137 

c15928 (GGA)6 TACATATCAACCAAGAACGGAG 56.82 TTGATCTAAGCTTTCTCATTCG 56.48 255 

c17395 (GCT)7 AGGTTTCAGGATCAGAGAACTG 57.52 CAATACCTGTGACGAATCAATC 57.09 254 

c2003 (CTC)6 ACTCCCAAGTTCTTCTCACACT 57.03 AGGAGGATTTGCATTGACAT 57.04 243 

c11123 (CCA)6 TTTTTACCTGCTTCGGTTACTC 57.66 TGATGTAGATCTCGCTCGTAAC 57.15 272 

c12656 (TTA)5 GGGAAACATTTATGAAAGTGC 56.28 ATTCTCTCTAGCCTGAATGGAG 56.83 218 

c13227 (TCC)6 ACAAGCTCTTACACACGCTTC 57.31 AATGCATTGGAGAAAGTAATTG 56.05 130 
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Table 5  Sample sizes (N), observed (HO) and expected (HE) proportions of heterozygotes, and number of alleles (A) for each locus and population combination. 
Asterisks denote combinations where HO differed significantly from expectation based on Hardy-Weinberg equilibrium, with such tests conducted in GENEPOP 
(Rousset 2008; dememorization 10000, batches 100, iterations per batch 5000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Population 
 

c13227  c14652  c15928  c15116  c11123  c12656  c2003 

 N HO HE A  HO HE A  HO HE A  HO HE A  HO HE A  HO HE A  HO HE A 

Outer CP so., urb 140 0.4 0.4 5  0.6 0.7 7  0.3 0.3 2  0.3 0.3 3  0.2 0.2 2  0.4 0.4 4  0.6 0.6 6 
Outer CP so., for 120 0.4 0.4 4  0.6 0.6 8  0.3 0.3 3  0.5 0.5 3  0.3 0.3 2  0.5 0.5 3  0.6 0.6 4 
Inner CP so., urb 80 0.4 0.4 5  0.4 0.5 6  0.3 0.3 2  0.2 0.3* 4  0.2 0.3 3  0.5 0.5 5  0.6 0.6 4 
Inner CP so., for 100 0.5 0.6 6  0.6 0.7 7  0.3 0.3 2  0.4 0.4 4  0.3 0.3 3  0.4 0.4 4  0.5 0.6 6 
CP no., urb 37 0.1 0.1 3  0.7 0.7 4  0.6 0.5 3  0.5 0.5 3  0.2 0.2 2  0.4 0.4 3  0.6 0.5 4 
CP no., for 40 0.3 0.5 4  0.7 0.7 7  0.2 0.3 2  0.3 0.3 3  0.2 0.3 2  0.3 0.4 3  0.4 0.7* 5 
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Table 6  Posterior means of species-specific effects of forested wetland on occurrence and the linear and quadratic 
effects of date on detection for those wintering forest bird species detected during surveys and for which I 
estimated significant relationships. Statistically significant coefficient estimates had 95% credible intervals that did 
not overlap 0 and are here shown in bold 
 

Species Occupancy Detection 

Forested wetland  Date Date2 

mourning dove (Zenaida macroura) 0.21 0.96 -0.16 

red-shouldered hawk (Buteo 
lineatus) 

1.66 0.15 -0.22 

red-headed woodpecker 
(Melanerpes erythrocephalus) 

-2.1 -0.49 -0.03 

tufted titmouse (Baeolophus 
bicolor) 

-1.73 0.92 0.26 

golden-crowned kinglet (Regulus 
satrapa) 

0.13 -0.43 0 

white-breasted nuthatch (Sitta 
carolinensis) 

-1.43 0.09 0.08 

brown creeper (Certhia americana) -0.42 -0.8 0.02 

winter wren (Troglodytes hiemalis) 0.88 -0.53 0.01 

Carolina wren (Thryothorus 
ludovicianus) 

1.56 0.26 0.25 

gray catbird (Dumetella carolinensis) 2.14 -0.37 0.06 

hermit thrush (Catharus guttatus) 1.66 -0.7 0.01 

American robin (Turdus migratorius) 1 -0.63 -0.09 

American goldfinch (Spinus tristis) -0.27 0.19 0.36 

swamp sparrow (Melospiza 
georgiana) 

1.09 -0.08 0.31 

eastern towhee (Pipilo 
erythrophthalmus) 

0.63 0.26 0.34 

rusty blackbird (Euphagus carolinus) 1.78 0.44 -0.02 

common grackle (Quiscalus 
quiscula) 

0.87 1.02 -0.02 

common yellowthroat (Geothlypis 
trichas) 

0.63 1.06 0.38 

pine warbler (Setophaga pinus) -1.15 1.26 0.26 

yellow-rumped warbler (myrtle) 
(Setophaga coronata coronata) 

2.68 -0.1 0.02 
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Table 7  Results from analyses of molecular variance (AMOVA) for oak mistletoe (Phoradendron leucarpum) among 
habitat types (a, b) and host species (c, d) within host association regions quantified using either FST-like 
differences in alleles (a, c) or RST-like differences in fragment length (b, d)  
 
(a) 

Source  of variation (FST) Sum of squares Variance components Percentage of variation p-value 

Among regions 19.33 0.0082 0.51 0.033 

Among habitat types  
within regions 

22.90 0.036 2.27 0 

Within habitat types  
within regions 

1563.92 1.55 97.21 0 

Total 1606.15 1.60 100 
 

 
(b) 

Source  of variation (RST) Sum of squares Variance components Percentage of variation p-value 

Among regions 1154.51 -3.10 -1.63 0.55 

Among habitat types 
within regions 

4809.52 8.68 4.57 0 

Within habitat types 
within regions 

182084.73 184.20 97.06 0 

Total 188048.75 189.78 100 
 

 
(c) 

Source  of variation (FST) Sum of squares Variance components Percentage of variation p-value 

Among regions 19.33 0.0047 0.29 0.01 

Among host species  
within regions 

101.90 0.075 4.71 0 

Within host species  
within regions 

1484.93 1.52 95.00 0 

Total 1606.15 1.60 100 
 

 
(d) 

Source  of variation (RST) Sum of squares Variance components Percentage of variation p-value 

Among regions 1154.51 -4.46 -2.35 0.70 

Among host species  
within regions 

19340.52 19.85 10.45 0 

Within host species  
within regions 

167553.72 174.58 91.90 0 

Total 188048.75 189.97 100 
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Fig. 5  Locations of survey plots in forested upland and forested wetland habitats 
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Fig. 6  Locations where oak mistletoe samples were collected for a population genetics study in the Coastal Plain of 
Virginia and North Carolina; locations colored red were in urban habitat, locations colored green were in forested 
wetland habitat 
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Fig. 7  Posterior distributions of the effects of forested wetland habitat on the occurrence of oak mistletoe 
(Phoradendron leucarpum) and eastern bluebird (Sialia sialis). These effects were deemed statistically different as 
greater than 95% of the samples from the posterior of this relationship for oak mistletoe were greater than such 
samples for eastern bluebird (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015) 
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Fig. 8  Proportions of ancestry from four inferred populations represented by dark blue, light blue, red, and green 
colors for oak mistletoe samples (vertical lines with unique numeric identification) grouped by forested wetland 
and urban habitats as estimated by STRUCTURE (Pritchard et al. 2000) and optimally aligned across runs with 
CLUMPP (Jakobsson & Rosenberg 2007) 
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Fig. 9  Ancestry proportions for oak mistletoe samples grouped by host species as estimated by STRUCTURE 
(Pritchard et al. 2000) and optimally aligned across runs with CLUMPP (Jakobsson & Rosenberg 2007). Host species 
codes as follows: A = Acer saccharinum, B = Acer rubrum, C = Acer spp., D = Alnus serrulata, E = Betula nigra, F = 
Fraxinus pennsylvanica, G = F. profunda, H = Fraxinus spp., I = Liquidambar styraciflua, J = F. caroliniana, K = 
Quercus laurifolia, L = Gleditsia triacanthos, M = Q. phellos/laurifolia, N1 = Nyssa aquatica, N2 = N. sylvatica, N3 = 
N. biflora, O = Ulmus parviflora, P = Ulmus spp., Q = Quercus (Lobatae sub-genus) spp., R = Pyrus calleryana, S = Q. 
nigra, T = Q. phellos, U = U. alata, V = U. americana 
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Fig. 10  Ancestry proportions for oak mistletoe samples grouped by sampling location and habitat type (locations 
colored red were in urban habitat, locations colored green were in forested wetland habitat) as estimated by 
STRUCTURE (Pritchard et al. 2000) and optimally aligned across runs with CLUMPP (Jakobsson & Rosenberg 2007) 
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CHAPTER 4 

PLANTING EXPERIMENTS PROVIDE SUPPORT FOR A RELATIONSHIP BETWEEN LIGHT CONDITIONS AND 

ESTABLISHMENT OF A BIRD-DISPERSED MISTLETOE, PHORADENDRON LEUCARPUM (RAF.) REVEAL & M. C. 

JOHNST. 

 

4.1 INTRODUCTION 

The importance of local versus regional processes in determining plant community structure remains a 

controversial topic in plant ecology (Harvey et al. 1983, Tuomisto et al. 2003, Collins & Carson 2004, Gilbert & 

Lechowicz 2004, Lu et al. 2011, Alexander et al. 2012, Foster et al. 2011). An intermediate viewpoint holds that 

regional dispersal limitation provides an explanation for similar species that coexist despite direct competition for 

local resources (Hutchinson 1959, Tilman 1997). This intermediate viewpoint has been supported by empirical 

results (Tilman 1997, Turnbull et al. 2000) and incorporated in seed dispersal theory (Nathan & Muller-Landau 

2000). The high visibility of many mistletoe species coupled with both their dependence on avian frugivores for 

seed dispersal and discreteness of establishment sites (Overton 1994, Alexander et al. 2012, Mellado & Zamora 

2014b) makes the study of their ecology especially suitable for addressing this question (Martínez del Rio et al. 

1996, Carlo & Aukema 2005, Roxburgh 2007, Caraballo-Ortiz et al. 2017). 

Seed addition experiments can be used to determine the degree to which dispersal limitation or establishment 

limitation drive plant distribution and abundance (Clark et al. 2007). Such experiments are often conducted in the 

field or in a controlled setting that mimics field conditions to avoid ignoring unidentified environmental factors 

driving patterns (Renne et al. 2001, Levine & Murrell 2003, Clark et al. 2007). Several factors related to field 

settings often lead to small effect sizes and ambiguous results, including high seedling mortality and incomplete 

knowledge about the pre-existing seed bank (Clark et al. 2007). The latter problem does not exist in seed addition 

experiments for mistletoe species, as the seed bank is not hidden in soil and is more easily quantified prior to seed 

sowing.       

The oak mistletoe [Phoradendron leucarpum (Raf.) Reveal & M. C. Johnst.] is a stem parasite distributed across 

the southern United States (Kuijt 2003). This winter-fruiting evergreen shrub is dependent on avian frugivores for 

seed dispersal beyond the host tree of origin (Sutton 1951, Gougherty 2013), after which a glue-like substance 
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called viscin maintains attachment of the seed to the host stem. As with other mistletoes, the endophyte system 

acquires resources from hosts via a haustorium, which forms a disk on the host stem prior to penetration (Kuijt 

1969).  

In the Coastal Plain and Piedmont regions of Virginia and North Carolina, the study area of interest, oak 

mistletoe is more common in forested wetlands of the Coastal Plain than in other forested habitats (Weakley et al. 

2012). However, some potential host tree species such as red maple (Acer rubrum L.) occur in a variety of forested 

habitats in the region. Such variation in infection intensity across host tree species and habitat remains 

unexplained (Panvini 1991, Kuijt 2003, Hawkins 2010, Weakley et al. 2012).   

Avian seed disperser behavior has been shown to be an important factor driving the distribution of mistletoes 

(Martínez del Rio et al. 1996, Aukema 2004) and could play a role in determining patterns of oak mistletoe 

occurrence (Panvini 1991, Weinkam 2013). Evidence from avian survey data and oak mistletoe population genetics 

suggest that dispersal limitation is unlikely to play a large role in the affinity of oak mistletoe for forested wetland 

habitat in eastern Virginia and North Carolina (Chapter 3). Alternatively, observed oak mistletoe habitat 

relationships in the region could be driven by consistent differences in host tree quality attributed to local 

environmental conditions. 

Potential host trees of upland forest stands may be of lower quality for light-demanding oak mistletoe 

seedlings (Eleuterius 1976) due to structural characteristics of younger stands (Esseen et al. 1996, Menzel et al. 

2002, Weakley et al. 2012), namely closed canopies dominated by evergreen trees providing dense shade to 

saplings of potential host species in the understory. While little is known about the general response of mistletoes 

to soil hydrology (Norton & Smith 1999), host trees growing in wetlands may be of higher quality for water-limited 

oak mistletoe shrubs (Panvini 1991) due to greater water availability as evidenced by higher transpiration rates 

(Gregg & Ehleringer 1990, Yan 1992, Pauliukonis & Schneider 2001). Physiological responses of trees growing in 

flooded or compacted soils to reduced soil O2 (Larcher 1973) may make individuals in wetlands or urban areas 

higher quality hosts for oak mistletoe. Greater permeability of the vascular cambium in hydrophytic trees 

compared to mesophytic trees (Hook & Brown 1972) and the production of porous aerenchyma tissue in wetland 

plants (Larcher 1973, Keddy 2010) are examples of such mechanisms.     
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I have previously shown the presence of a positive relationship between oak mistletoe occurrence and forested 

wetland habitat in eastern Virginia and North Carolina even after accounting for host availability (Chapter 2). Here I 

tested for the presence of such a relationship after accounting for variation in canopy openness measured at 

ground level. The lack of a significant relationship between habitat and mistletoe occurrence in such a model 

would provide evidence for light availability as a driver of mistletoe distribution, assuming such canopy openness 

measurements are related to light availability at mistletoe establishment sites. Given weaknesses of purely 

correlative studies at separating process from pattern (MacKenzie et al. 2004), I used experimental seed sowing 

methods to complement findings from occurrence models fit to field survey data. 

Seed addition has been used in common garden experiment settings to test for host specificity in a variety of 

mistletoe-host systems (May 1971, Clay et al. 1985, Yan 1993, Overton 1994, Messias et al. 2014, Okubamichael et 

al. 2014, Caraballo-Ortiz et al. 2017). Seed sowing experiments have also been used to examine the effects of 

variation in abiotic conditions on mistletoe survival and establishment (Roxburgh & Nicolson 2008, Luo et al. 2016). 

Here I simulated oak mistletoe seed dispersal at both field sites and potted host trees across a range of light 

availability and flood regime treatments. Reduced establishment rates under abiotic conditions typical of forested 

uplands would indicate the potential importance of variation in local environment as a determinant of observed 

oak mistletoe habitat relationships (Clark et al. 2007). Alternatively, a lack of support for relationships between oak 

mistletoe establishment and abiotic factors would maintain dispersal limitation as a viable mechanism for driving 

these patterns. 

 

4.2 METHODS 

Habitat relationship versus canopy cover 

I used stratified random sampling to select 96 circular plots with 25-m radii in forested wetland and forested 

upland habitats of the study area (Fig. 11). Plots were surveyed for the presence or absence of oak mistletoe 

shrubs during one of five winter seasons (Dec –Mar) from the 2015 –2016 winter season to that of 2019 –2020. 

More details on the survey protocol and the quantification of host availability can be found elsewhere (Chapter 2).  

Plot-level percent canopy cover as a surrogate for light availability was quantified during the growing season 

following the winter in which the plot was surveyed for mistletoe. Convex densiometer readings were collected at 
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the center of each plot and then averaged across all four cardinal directions (Jennings et al. 1999, Watts et al. 

2011). I analyzed oak mistletoe occurrence data using a model very similar to that used previously to show a 

relationship between habitat type and occurrence rate after accounting for host availability (Chapter 2). Here I 

included an additional parameter to represent the relationship between observed canopy openness and oak 

mistletoe occurrence. 

 

Field planting experiment to simulate dispersal to different local light environments 

I conducted an oak mistletoe seed sowing study in the field at two forested wetland sites in southeastern 

Virginia with mistletoe: Great Dismal Swamp National Wildlife Refuge (GDSNWR) and South Quay Sandhills State 

Natural Area Preserve (SQSNAP). At each site, stratified random sampling was used to select plots (n = 26 at 

GDSNWR, n = 25 at SQSNAP); maps of these plots are in the Appendix. The two strata for sampling consisted of 

portions of forested blocks within 15 m of an edge (“edge” plots) and portions greater than 15 m from an edge 

(“inner” plots) to ensure planting under a wide range of local light conditions (Gehlhausen et al. 2000). Mistletoe 

seed collection and planting at a given plot occurred during one of the three winter seasons (Dec –Mar) from the 

2015 –2016 winter season to that of 2017 –2018.  

Mistletoe seeds to be planted were collected from either GDSNWR or SQSNAP to match the plot location, with 

host-specific batches of seeds stored within intact fruits at 1.6 C for no longer than 76 days (n = 1090 seeds, mean 

= 28 days, sd = 18 days). The central point of each plot was visited and the closest suitable host trees to this point 

were used for seed sowing. Suitable host trees were typically individuals of red maple, swamp tupelo (Nyssa biflora 

Walter), and ash spp. (Fraxinus L. spp.), the most frequently parasitized wetland trees in the region (Baldwin, Jr. & 

Speese 1957). The distribution of oak mistletoe seeds planted at field plots across 11 host species and genera is in 

the Appendix. Five seeds per branch were planted on four to six branches per plot (mean = 4.3 branches, sd = 0.61 

branches), with planting done on consistently thin branch sections (mean = 6.8 mm diameter, sd = 3.5 mm; 

Overton 1994, Mellado & Zamora 2014b). The number of branches selected varied with the plot-specific 

availability of suitable branches within reach for planting. Seeds from mistletoe shrubs parasitizing different host 

species were allocated randomly to host branches during planting (Mellado & Zamora 2014b) and the presence of 

mature mistletoe shrubs on each new host tree at the time of planting was recorded. During analyses of data on 
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seed fates, the inclusion of random effects corresponding to plot identity and branch identity nested within plot in 

generalized linear mixed models (GLMMs) allowed me to account for the lack of independence among seeds 

planted on the same branch and in the same plot (Bolker et al. 2009). 

I removed the exocarp from oak mistletoe fruits prior to planting seeds and used either viscin (n = 400; May 

1971, Mellado & Zamora 2014b) or EcoGlueTM (n = 690; Willamette Valley Company, Eugene, Oregon) for adhering 

the seeds to host branches. Surviving seedlings at each plot were monitored approximately every three months 

until the emergence of leafy stems were detected (Herrera et al. 1994). I used percent canopy openness to 

represent light availability, and measurements were made during the first post-planting growing season at each 

branch location using a convex densiometer (Jennings et al. 1999, Watts et al. 2011).  

I considered germinated seeds as those with green, emergent hypocotyls present after approximately three 

months and treated the binary germination state of each seed as a Bernoulli random variable (Mellado & Zamora 

2014b). Variation in germination rates was modeled as a function of fixed and random factors with GLMMs and a 

logit link (Bolker et al. 2009). I used a similar approach for analyzing data on the binary state of whether a seed 

remained for approximately three months or disappeared, also viewed as a Bernoulli random variable. In both 

cases, I used AICc to rank alternative models by their predictive power and derived model-averaged predictions of 

response rates across levels of factors deemed important as explanatory covariates (Burnham & Anderson 2002, 

Burnham et al. 2011). The GLMMs, model comparisons, and similar analyses described in the remainder of this 

Methods section were run in R (R Core Team 2021) using the packages lme4 (Bates et al. 2015) and AICcmodavg 

(Mazerolle 2020). 

The global model of variation in rates of seeds remaining to approximately three months included the fixed 

effects of branch diameter, planting method (glue or natural viscin), and site (GDSNWR or SQSNAP), and the 

random effects of plot identity and branch identity nested within plot (Table 8). Other candidate models compared 

to this global model using AICc included subsets of these fixed effects, but all models in the set included the 

random effects of plot and nested branch identities. The set of models of variation in germination rates included 

combinations of the fixed effects of percent canopy openness, planting method, and year of planting, while all 

models included the random effects of branch identity (Table 8). These models of variation in germination rate did 

not include the random effects of plot identity, as I expected unmeasured factors likely to be accounted for with 
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random plot effects such as variation in plot-level seed predator abundance to affect proportions of seeds 

remaining but not germination rates. Continuous covariate values were scaled by subtracting from the mean and 

dividing by the standard deviation. 

 

Controlled planting experiment under different light and flood regime conditions 

I designed a controlled experiment to jointly estimate the effects of local light environment and flood regime 

on oak mistletoe establishment. In winter 2016–17 I transplanted 115 red maple saplings from a single population 

in Halifax County, North Carolina into pots. These potted red maple saplings were transported to the Virginia Tech 

Hampton Roads Agricultural Research and Extension Center in the city of Virginia Beach, Virginia and placed in 

plastic tubs (3–4 saplings per tub). Beginning in 2017, tubs were subjected to one of three growing season (mid-

April to mid-October) flood regime treatments: continuous, partial, and unflooded. Water in tubs subjected to the 

continuous flooding treatment (n = 39 saplings) was maintained near soil level over the entire growing season. 

Water in tubs subjected to the partial flooding treatment (n = 38 saplings) was maintained near soil level for 2 

weeks at a time in between 2-week periods when natural precipitation was the sole water source. Drain holes 

were drilled in the bottom of tubs subjected to the unflooded treatment (n = 38 saplings). 

After maintaining the flood regime treatments during the 2017 growing season, I used the viscin planting 

method described above to adhere oak mistletoe seeds collected from a single population in GDSNWR on the 

potted saplings the following winter. Two to ten seeds were planted on each sapling for a total of 599 seeds, with 

variation in planting rate a function of sapling size. I checked all seeds after 3 months and assessed germination 

rates as described in the previous section. Variation in the binary germination state of seeds was modeled as 

functions of fixed and random factors using alternative GLMMs ranked with AICc. Models varied in the inclusion of 

the fixed effect of flood regime treatment, but all included random effects corresponding to tub identity and 

sapling identity nested within tub to account for the lack of independence among seeds planted on the same 

sapling and in the same tub (Table 9; Bolker et al. 2009). 

During the 2018 growing season, in addition to reinitiating flood regime treatments at the tub level, I subjected 

germinated mistletoe seeds to one of 4 light availability treatments. Light availability treatments were applied at 

the sapling level under a split-plot design, with saplings representing sub-plots within plastic tubs as main plots. 
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Saplings hosting germinated mistletoe seeds in physical positions suitable for affixing sleeves of light-altering cloth 

material (i.e. along internodes; n = 51 saplings) were randomly assigned one of four light availability treatments: 

broadcloth covering of seeds to create complete shade (n = 15 saplings, n = 38 seeds), 73% shade cloth covering 

(the Wetsel Seed Company, inc., Harrisonburg, VA) to create moderate shade (n = 10 saplings, n = 33 seeds), and 

translucent tulle (n = 9 saplings, n = 36 seeds) and no covering (n = 17 saplings, n = 55 seeds) as control treatments 

(Randle et al. 2018). 

I checked the planted mistletoe seeds approximately every 3 months for a total of 18 months and recorded 

data on seedling survival to 18 months and the presence of leafy stems. As with data from the field planting 

experiment, I treated this data as Bernoulli random variables and analyzed rates of survival to 18 months and leafy 

stem development separately using GLMMs (Mellado & Zamora 2014b). Models varied in their inclusion of the 

fixed effects of light availability and flood regime treatments and were ranked using AICc (Table 9). All models 

included random effects corresponding to tub identity and sapling identity nested within tub as described above 

for the analysis of germination rates. Random sapling effects accounted for unmeasured variation between 

saplings that received light availability treatments (n = 51) and those that did not (n = 32). 

 

4.3 RESULTS 

Habitat relationship versus canopy cover 

I considered the association between oak mistletoe occurrence at survey plots and forested wetland habitat 

statistically significant as the 95% credible interval for this effect did not overlap 0 after accounting for both 

observed canopy openness and host availability (posterior mean = 2.27, lower credible interval = 0.95, upper 

credible interval = 3.74). While the 95% credible interval for the effect of potential host availability on mistletoe 

occurrence did not overlap 0 (posterior mean = 2.19, lower credible interval = 0.98, upper credible interval = 3.63), 

the effect of observed canopy openness on mistletoe occurrence was deemed non-significant (posterior mean = 0, 

lower credible interval = -0.73, upper credible interval = 0.65). 
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Field planting experiment to simulate dispersal to different local light environments 

Of 1099 seeds planted in GDSNWR and SQSNAP, 71% remained after approximately three months. Planting 

method (glue or natural viscin) was an important predictor of variation in this rate, as candidate models that 

included the effect of planting method collectively received all AICc weight. While one model of variation in the 

proportion of seeds remaining that received support (delta AICc = 2.02) did include the effect of branch diameter, 

this covariate does not appear to be an important predictor of this response as models including the effect only 

collectively received 27% of the AICc weight. Of those seeds that remained after three months, 74% germinated. 

The candidate model of variation in germination rate that received all support when ranked with AICc included the 

effects of planting method and year of planting only. Full model selection results and model-averaged predictions 

of both rates of seeds remaining and seed germination are in the Appendix. 

The 33 seedlings that survived 18 months occurred in 10 edge and 3 inner plots. A total of 13 seedlings that 

produced leafy stems occurred in 1 inner and 7 edge plots. Leafy stems on seven seedlings arose from epicotyls, 

four seedlings had leafy stems develop from the endophytic system only, and two seedlings produced leafy stems 

from both the epicotyl and haustorial disk.  

 

Controlled planting experiment under different light and flood regime conditions 

Of 599 planted seeds, 360 remained on potted host saplings approximately three months after planting; 89% of 

these germinated. Germinated seedlings that outlived host tissue or that slipped onto non-host materials were 

disregarded during subsequent analyses, leaving 65 seeds available to establish on saplings subjected to 

continuous flooding (n = 25 saplings), 91 seeds available to establish on saplings subjected to partial flooding (n = 

28 saplings), and 104 seeds available to establish on saplings left unflooded (n = 30 saplings). Sample sizes for light 

availability treatments were given in Methods. 

One candidate model of variation in germination rates that received support when ranked by AICc (delta AICc = 

3.84) included the effect of flood regime treatment, with model selection results in the Appendix. The model in 

this set that did not include this effect received 87% of the AICc weight, which I interpreted as only minimal 

support for a relationship between flood regime treatment and oak mistletoe germination rates. A vast majority of 

leafy stems produced by seedlings that established on potted host saplings arose from the epicotyl, with only 9% 
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of seedlings that produced leafy stems hosting such stems that traced to the endophytic system. All models of 

variation in both seedling survival to 18 months and leafy stem development received some support based on 

delta AICc (Tables 10, 11; Burnham et al. 2011). Models that included the effects of flood regime treatment 

collectively received 30% of the AICc weight across models of variation in survival and 37% of this weight across 

models of variation in leafy stem development. Models that included the effects of light treatment collectively 

received 69% of the AICc weight across models of variation in survival and 82% of this weight across models of 

variation in leafy stem development. I interpreted these results as strong support solely for a relationship between 

light availability and leafy stem development (Figure 12).  

 

4.4 DISCUSSION 

The finding of a positive relationship between forested wetland habitat and oak mistletoe occurrence after 

accounting for ground-level canopy openness suggests that other factors are important determinants of the 

distribution of mistletoe in the study area. The widespread distribution of commonly parasitized tree species, 

coupled with similar patterns of habitat specificity shown by many frugivorous birds in the region leaves variation 

in abiotic conditions as a viable mechanism driving this pattern in oak mistletoe occurrence (Chapters 2, 3). 

Planting experiments described here provide evidence to support local light availability as an abiotic variable 

capable of limiting oak mistletoe establishment and driving its association with forested wetlands in eastern 

Virginia and North Carolina.   

 

Evidence for establishment limitation in oak mistletoe 

Planting experiments can provide evidence to support alternative hypotheses about the roles of dispersal 

limitation or establishment limitation in determining plant distributions (Clark et al. 2007). A lack of evidence for 

relationships between oak mistletoe establishment and abiotic variables manipulated in planting experiments 

could result from three scenarios: 1) oak mistletoe can establish across a range of local environmental conditions 

and variation in mistletoe occurrence across habitats is more likely driven by dispersal limitation, 2) the abiotic 

variables that limit oak mistletoe establishment were not included in the experiment, or 3) sample sizes were too 

small to detect treatment effects. Instead, and more typical of studied plant populations (Renne et al. 2001, Clark 
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et al. 2007), I found evidence that establishment limitation outweighs dispersal limitation in determining the 

distribution of oak mistletoe. Results presented here support a relationship between local light availability 

conditions manipulated using shade cloth treatments and oak mistletoe establishment on potted host saplings as 

measured by leafy stem development.  

 

Comparisons between planting experiments in the field and on potted host saplings 

Red maple saplings subjected to flooding treatments showed visible changes in morphology similar to those 

responses to flood stress described in a previous greenhouse study (Day 1987). Yet, I did not find strong support 

for relationships between germination rates of oak mistletoe seeds and both flood regime treatments when 

planted on potted host saplings and local light availability conditions when planted on host trees in the field. The 

former finding was expected, as oak mistletoe seeds are known to readily germinate even on non-host material 

(Randle et al. 2018) and so I assumed that germination rates on hosts subjected to different hydrological 

conditions would be similar (May 1971). While oak mistletoe seeds require light to germinate (Gardner 1921), 

results shown here suggest that germination rates are not sensitive to variation in light availability under field 

conditions. 

The large variation in host branch diameter available for inoculation with oak mistletoe seeds in the field 

allowed me to examine the relationship between this covariate and the proportion of seeds that remained after 

approximately 3 months. The inclusion of such an effect in models of this response variable was not strongly 

supported, which was a finding similar to those from a planting experiment using oak mistletoe seeds from Texas 

and northern Mexico (May 1971). That study found seedlings with stem development from the endophytic system 

to outnumber seedlings with such development from the epicotyl, while I found the opposite pattern in results 

from my planting experiment on potted host saplings with roughly equal proportions of leafy stems developing 

from the two origins in my field planting experiment.  

In contrast with the planting experiment on potted host saplings, I was unable to discern an effect of local light 

availability conditions on oak mistletoe establishment in the field due to extremely low seedling survival rates, 

typical of plant populations heavily influenced by post-dispersal factors (Clark et al. 2007). The much higher 

establishment rate for seeds planted on potted host saplings than on host trees in the field supports the existence 



62 

 

 

of a positive relationship between light availability and oak mistletoe establishment. Field sites had consistently 

lower levels of light availability than the site hosting the controlled experiment due to canopy shade, and a 

majority of field planting plots where I detected establishment among planted oak mistletoe seeds were near a 

forest edge.  

 

Evidence for the importance of abiotic conditions in determining the distribution of other mistletoe species 

The importance of environmental conditions, especially light availability (Panvini 1991, Mellado & Zamora 

2014b), in determining mistletoe habitat relationships is suggested by studies that find differences between 

distributions of mistletoes and distributions of their dispersers and host trees (Lira-Noriega & Peterson 2014). As I 

have shown for oak mistletoe in eastern Virginia and North Carolina (Chapter 3), other studies have found 

mistletoe occurrence to be more restricted with regards to habitat type than that of the widespread and abundant 

avian species known to disperse their seeds (Norton & Smith 1999, Tikkanen et al. 2021). Even in systems where 

avian behavior is less well understood, the presence of reduced numbers of mistletoes in the apparently less 

preferred habitat type is an indication of some dispersal by birds into such habitats (Norton & Smith 1999). A small 

reduction in mistletoe establishment success in the less preferred habitat type due to variation in abiotic 

conditions could lead to striking differences in oak mistletoe occurrence rates between habitats if dispersal 

distances are short (Reid 1989, Reid et al. 1995).    

On smaller spatial scales, variation in mistletoe establishment and occurrence has been shown among hosts 

varying in size (Roxburgh & Nicolson 2008) and stand density (Matula et al. 2015, Usta & Yilmaz 2021). As an 

alternative to disperser behavior, establishment limitation under low light conditions could explain lower mistletoe 

occurrence on shorter host trees and those in denser stands (Matula et al. 2015). A negative relationship between 

mistletoe establishment and stand density could also indicate the importance of abiotic resources other than light 

in determining mistletoe distributions if reduced competition for such resources makes trees in open stands most 

suitable as hosts.  
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Future directions 

Mistletoes are typically found in tree canopies (Calder & Bernhardt 1983), and despite logistical challenges, 

studies of relationships between mistletoe occurrence and light availability conditions should involve data 

collected from locations within the canopy (Shaw & Weiss 2000). I did not find a relationship between oak 

mistletoe occurrence and percent canopy closure measurements made at ground level. In certain sampled forest 

types with reduced tree densities I believe a correlation may exist between light availability conditions experienced 

by oak mistletoe shrubs in the canopy and those measured at ground level, but quantifying light availability at 

canopy heights representative of the distribution of oak mistletoe is necessary to determine the relationship 

between this abiotic variable and mistletoe occurrence.  

Observations of non-fruiting oak mistletoe individuals surviving in dense shade (Kuijt 1969) and physiological 

studies showing that oak mistletoe can behave like a shade plant (Panvini 1991, Strong et al. 2000) suggest that 

low light availability may only reduce oak mistletoe establishment and survival at a young age. Continued 

monitoring of the survival of oak mistletoe seedlings growing under a variety of light availability conditions beyond 

the establishment and early growth phases studied here would inform on the ability of oak mistletoe to persist 

under dense shade conditions. Such monitoring data that informed on rates of flowering and fruiting could help 

answer whether a lack of such behavior observed in shrubs in deep shade is a response to light conditions or to 

age-related changes in host tissue.  

 

Conclusion 

I took advantage of the discrete establishment sites and easily quantifiable pre-planting seed rain of oak 

mistletoe when interpreting results from planting experiments. While extremely low survival rates of oak mistletoe 

seedlings planted in the field made any relationships with local environmental conditions difficult to discern, I 

could largely attribute variation in counts of established seedlings on potted host saplings to treatment effects. I 

found evidence for a relationship between manipulated local light availability and seedling establishment rates on 

such host saplings. If dispersal limitation was the primary driver of variation in oak mistletoe occurrence across 

habitats with different light availabilities, I would have expected a lack of such a relationship. While this finding 

provides support for establishment limitation as an important driver of variation in mistletoe occurrence across 
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habitat types, data on light availability from different habitat types in my study area is needed to connect this 

finding to observed oak mistletoe habitat relationships in eastern Virginia and North Carolina.  
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Table 8  Descriptions of models of variation in germination rates of oak mistletoe seeds planted at field sites and 
rates of such seeds remaining to approximately three months. “Y” above indicates independent variables for which 
effects were included in at least some models of the respective response rate, while “N” indicates such variables 
that were not included in any models of that response. Other abbreviations used above: “G” = glue, “N” = natural 
viscin, “GDSNWR” = Great Dismal Swamp National Wildlife Refuge, “SQSNAP” = South Quay Sandhills State Natural 
Area Preserve, “plmeth” = planting method, “stbrdiam” = standardized branch diameter, and “stlight” = 
standardized percent canopy openness 

Variable Response 

Seed remaining rate Germination rate 

Branch diameter Y N 

Planting method (G or N) Y Y 

% canopy openness N Y 

Year N Y 

Site (GDSNWR or SQSNAP) Y N 

Plot (random) Y N 

Branch (random, nested in plot) Y Y 
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Table 9  Descriptions of models of variation in germination rates of oak mistletoe seeds planted on potted host 
saplings and rates of such seedlings surviving and developing leafy stems. “Y” above indicates independent 
variables for which effects were included in the global model of the respective response rate, while “N” indicates 
such variables that were not included in any models of that response. Other abbreviations used above: “flooding” 
= flood regime treatment and “light” = shade cloth treatment 

Variable Response 

Germination rate Seedling survival rate Leafy stem development rate 

Shade cloth treatment N Y Y 

Flooding treatment Y Y Y 

Tub (random) Y Y Y 

Sapling (random, nested in plot) Y Y Y 

 
 
 
 
Table 10  Alternative generalized linear models for the relationships between rates of oak mistletoe seedling 
survival to 18 mo. and the fixed effects of flood regime treatments and light availability treatments as ranked by 
AICc. All models included the random effects of plastic tub and nested sapling identities  

Variables included in model K AICc Delta AICc AICc weight Cumulative weight LL 

Intercept + light 6 321.96 0 0.48 0.48 -154.81 

Intercept + light + flood 8 323.59 1.64 0.21 0.69 -153.51 

Intercept (null) 3 323.59 1.64 0.21 0.91 -158.75 

Intercept + flooding 5 325.23 3.27 0.09 1 -157.5 
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Table 11  Alternative generalized linear models for the relationships between rates of oak mistletoe leafy stem 
development and the fixed effects of flood regime treatments and light availability treatments as ranked by AICc. 
All models included the random effects of plastic tub and nested sapling identities 

Variables included in model K AICC Delta AICc AICc weight Cumulative weight LL 

Intercept + light 6 323.23 0 0.52 0.52 -155.45 

Intercept + light + flood 8 324.33 1.1 0.3 0.82 -153.88 

Intercept (null) 3 326.38 3.15 0.11 0.93 -160.14 

Intercept + flooding 5 327.33 4.1 0.07 1 -158.55 

 

 



68 

 

 

 

Fig. 11  Locations of survey plots in forested upland and forested wetland habitats 
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Fig. 12  Model-averaged predictions of rates of oak mistletoe leafy stem development across light availability 
treatments; error bars represent 95% confidence intervals 
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CHAPTER 5 

CONCLUSION 

 

Here I analyzed data from field surveys, planting experiments, and genetic markers to quantify the relative 

importance of potential drivers of the positive association between oak mistletoe and forested wetlands in eastern 

Virginia and North Carolina. I hereafter termed this pattern of oak mistletoe distribution a habitat relationship; the 

factors most influential in determining such patterns in oak mistletoe distribution remain unidentified (Panvini 

1991, Kuijt 2003, Hawkins 2010, Gougherty 2013). The study of the effects of host availability, avian disperser 

behavior, and local environmental conditions on mistletoe habitat relationships requires consideration of 

mistletoe distribution at different spatial scales (Aukema 2004).  

Effects of local environmental conditions can be viewed at the scale of variation in mistletoe occurrence across 

individual host trees or within host canopies (Mellado & Zamora 2014a, Mellado & Zamora 2014b). If forested 

habitats differ consistently in such an abiotic variable, then effects at such fine spatial scales could collectively 

determine a mistletoe habitat relationship. In the study area, collecting data on such environmental variables in 

situ proved difficult due to canopy heights and understory conditions. Results from analyses comparing such data 

to both oak mistletoe occurrence and the establishment of mistletoe seeds planted in the field were correlative in 

nature. These limitations led me to use experimental approaches to quantify relationships between abiotic factors 

and oak mistletoe establishment. 

Study of the species identity of parasitized hosts at the scale of individual trees within a forest patch can reveal 

regional mistletoe-host associations (Baldwin & Speese 1957, Clay et al. 1985, May 1971, Aukema 2003, Martínez 

del Rio et al. 1996). I used an examination of variation in mistletoe occurrence across individual host trees to 

identify such patterns in the study area. As with habitat relationships, the relative influences of potential drivers of 

regional host associations are unknown (Kuijt 2003). Variation in mistletoe occurrence across habitats could 

influence regional host associations if mismatches exist between habitat relationships of mistletoe and a potential 

host tree species, making that tree species effectively out of reach of the parasite (Norton & Carpenter 1998). 

Mistletoe-host associations are important to account for when examining the effect of host availability on 

mistletoe habitat relationships. Here I used data that took such regional variation in host usage into account to 
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quantify the relationship between host availability and the observed affinity of oak mistletoe for forested wetlands 

in the study area. Both this effect and that of avian disperser behavior were estimated using data collected at the 

scale of survey plots within habitat patches, also the scale at which habitat relationships are realized. When viewed 

as a keystone resource (Watson 2001) the distribution of mistletoe at the forest patch scale can have implications 

for wildlife conservation (Panvini 1991, Martínez del Rio et al. 1996, Aukema 2004, Lira-Noriega & Peterson 2014, 

van Halder et al. 2019).  

 

Relationships between host availability and oak mistletoe distribution across habitats and host species 

The finding of a lack of relationship between an oak mistletoe habitat relationship and host availability was 

novel as I accounted for regional host associations when quantifying host abundance. Geographic host associations 

in the study area were evidenced by widespread tree species that were only parasitized regionally. A planting 

experiment by Randle et al. (2018) showed a relationship between the establishment of oak mistletoe seedlings 

from eastern Texas and various environmental conditions, including the presence of volatile compounds released 

by hosts. Those authors proposed that regional variation in the overlap between the phenology of the release of 

such potential gaseous cues and the dispersal of oak mistletoe seeds could explain host associations. 

Correlations between regional mistletoe host diversity and overall tree diversity have been observed in general 

(Kuijt 1969) and in the case of oak mistletoe in the study area. The myriad of planted exotic trees in urban areas 

allows for a greater diversity of oak mistletoe hosts than in forested habitats. Such patterns suggest regional host 

associations could be driven by random dispersal constrained by host availability. Regional parasitism in my study 

area was observed for sweetgum (Liquidambar styraciflua L.), which co-occurs with and overlaps broadly in terms 

of habitat with the widespread host red maple (Acer rubrum L.). I showed that geographic variation in abundance 

and habitat relationships of sweetgum is not correlated with regional variation in its parasitism in the study area. 

This result suggests that host availability is not an important driver of this pattern.  

Tree species parasitized by oak mistletoe in eastern Virginia and North Carolina do not offer fleshy fruit 

resources to avian frugivores in winter. Regional variation in the attractiveness of host trees as food resources to 

generalist frugivores should not exist in the study area at the time of mistletoe seed dispersal, reducing the 

likelihood that disperser behavior plays an important role in determining regional host associations. While 
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sweetgum occurs in many habitats across the study area, I did find a correlation between regional variation in oak 

mistletoe habitat relationships and in the parasitism of sweetgum. The latter finding maintains the potential for 

disperser behavior or abiotic conditions to drive regional variation in this parasitism, and the generality of such an 

interaction between the habitat of a parasite and variation in its parasitism of a widespread host deserves further 

study. 

I did not find evidence for a correlation between oak mistletoe genetic structure and geographic shifts in host 

associations in the study area. The potential remains for the existence of a genetically distinct oak mistletoe 

population predisposed to parasitizing the most common regional host (May 1971, Kuijt 2003). My work did not 

test hypothesized variation in susceptibility of host tree populations to mistletoe infection as a driver of regional 

host associations (May 1971, Panvini 1991, Sallé et al. 1993, Mellado & Zamora 2014b). 

 

Relationship between avian disperser behavior and oak mistletoe habitat relationships 

Both dispersal limitations (Howe & Smallwood 1982, Westcott et al. 2005, Jordano et al. 2007) and 

establishment limitations based on abiotic niche requirements (Hutchinson 1957) are believed to play roles in 

structuring plant communities (Tilman 1997, Nathan & Muller-Landau 2000, Tilman 2004). Similarly, mistletoe 

distributions may be determined by some combination of disperser behavior (Martínez del Rio et al. 1996, Aukema 

2004) and environmental variation (Eleuterius 1976, Gregg & Ehleringer 1990, Yan 1992, Norton & Smith 1999), 

including host availability and suitability (Overton 1994, Aukema 2004, Caraballo-Ortiz et al. 2017). To test this, I 

examined the potential role of avian dispersers in determining oak mistletoe habitat relationships in eastern 

Virginia and North Carolina.  

Motion-activated cameras were used to detect frugivory by potential oak mistletoe dispersers in the study 

area. This work confirmed the cedar waxwing (Bombycilla cedrorum) and eastern bluebird (Sialia sialis) as the 

primary avian frugivores consuming oak mistletoe fruits, of which only the cedar waxwing has been recognized as 

an important mistletoe disperser elsewhere to my knowledge (Overton 1994). Surpisingly, mammals were also 

frequently recorded eating mistletoe fruits. This frequency relative to such detections for avian species may be 

attributable to both reduced camera sensitivity and generally low camera heights. While it seems unlikely that 

mammals act as effective dispersers of oak mistletoe (Kuijt 2003), the importance of mammals in dispersing 
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mistletoe seeds in other systems makes any effects of mammal frugivory on oak mistletoe distribution and 

abundance worthy of future study (Amico & Aizen 2000, Camargo et al. 2011, Génin & Rambeloarivony 2018). 

I used community occupancy models to estimate avian frugivore habitat relationships using data from repeat 

point counts conducted at survey plots in forested habitats across the study area. The use of these estimates to 

study the relationship between avian disperser behavior and oak mistletoe distribution was novel amongst such 

studies in mistletoe ecology as I accounted for the imperfect detection of frugivores. Variable and often extremely 

low species-specific detection rate estimates provided evidence for the importance of accounting for imperfect 

detection to avoid bias when estimating habitat relationships for avian dispersers (MacKenzie et al. 2002, Tyre et 

al. 2003, Kéry et al 2008, Ruiz-Gutiérrez et al. 2010). 

My analysis of field survey data showed discrepancies between habitat relationships of seemingly widespread 

avian dispersers and that of oak mistletoe. Because birds surveyed were unmarked, the potential for cryptic 

habitat specificity remained. Patterns of gene flow can inform on cryptic disperser behavior (Aukema 2004), so I 

examined oak mistletoe population genetics for evidence of dispersal limitation between habitat types (Ouborg 

1999). Such disperser behavior could determine the observed positive relationship between forested wetland 

habitat and oak mistletoe occurrence. Instead, the only genetic structure evident indicated a lack of gene flow 

between mistletoe populations on different host tree species.  

 

Effects of abiotic conditions on oak mistletoe distribution 

The effects of abiotic variables on mistletoe range limits are widely recognized (Wagener 1957, Kuijt 2003, 

Aukema 2004, Mellado & Zamora 2014b, Tikkanen et al. 2021). Less is known about the importance of such 

variables relative to effects of disperser behavior in determining mistletoe distributions at finer spatial scales 

(Aukema 2004). Here I used a seed sowing experiment to quantify the effects of variation in light availability and 

flood regime on oak mistletoe seedling survival and establishment. Under the assumption that such variables differ 

consistently between forested habitat types, the existence of an effect would support the potential importance of 

that variable in determining the observed oak mistletoe habitat relationship in the study area. 

Model selection supported the inclusion of the effect of light availability to explain variation in oak mistletoe 

establishment rates. Further experimental work is needed to confirm the existence of a non-linear relationship 
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between light availability and oak mistletoe establishment, but such a hypothesis seems reasonable for a plant 

adapted to survive within canopies of open forests.  

Establishment limitation seems more important than dispersal limitation in determining oak mistletoe 

distribution at the scale of habitat patches. I did not examine the distribution of oak mistletoe within tree 

canopies, and dispersal limitation may play a larger role in determining patterns at this finer spatial scale. Early 

survival of the mistletoe Viscum album subsp. austriacum (Wiesb.) Vollman has been shown to vary along with 

environmental variables across positions within host canopies (Mellado & Zamora 2014a, 2014b). Like my findings 

at a coarser scale, this finding for V. a. austriacum implies the importance of post-dispersal influences on mistletoe 

distributions within tree canopies.  

 

Final remarks 

Both avian dispersers and host trees appear more widespread with regards to habitat than oak mistletoe in the 

study area. Coupled with support for the effect of light availability on oak mistletoe establishment, these results 

suggest that post-dispersal effects are most important in determining the positive association of oak mistletoe 

with forested wetland habitat. Data on local light availabilities at potential oak mistletoe establishment sites in 

host canopies are needed to show significant variation in this abiotic variable across different forested habitat 

types.   

Regional host associations do not appear capable of explaining the oak mistletoe habitat relationship observed 

in the study area. Such regional patterns could determine oak mistletoe habitat relationships in other portions of 

its range if the preferred host is restricted by habitat. I found support for an interaction between mistletoe habitat 

relationships and host usage, but the mechanisms driving both variation in mistletoe habitat relationships and this 

interaction deserve more study. 

The discovery of a genetically distinct population of oak mistletoes restricted to hosts in the genus Nyssa L. was 

unexpected. Work remains to determine barriers to gene flow between these mistletoes and those on neighboring 

host trees of alternate species, including a common garden planting experiment to test for host species-specific 

establishment limitations. The result remains a testament to the discoveries that await future workers studying the 

ecology of the remaining wild portions of this populated region. 
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Overall, I hope my work can help instill an appreciation for our native leafy mistletoe in the southeastern US. Its 

presence adds colorful variation to the canopies of deciduous swamp trees in winter, and the enjoyment of 

stillness and quiet in such habitats at this season can be heightened by the welcome interruption of the noisy and 

nomadic flocks of frugivorous birds that the mistletoe resource helps support. Managers would be wise to consider 

conservation of oak mistletoe in forested wetlands and these results should aid such efforts.  
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APPENDIX 

FIGURES 

 

 

Fig. A1  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
five regions that hosted sub-plots where Liquidambar styraciflua was detected. Fruit images represent locations 
where L. styraciflua, restricted as a host to one region, was parasitized by mistletoe. 
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Fig. A2  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
five regions that hosted sub-plots where Acer rubrum was detected. Images represent locations where A. rubrum 
was parasitized by mistletoe. Detected as a host in all five regions, I found a significant relationship between region 
and A. rubrum occurrence as a host across oak mistletoe populations.   
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Fig. A3  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
four regions that hosted sub-plots where Nyssa biflora was detected. Images represent locations where N. biflora 
was parasitized by mistletoe. Detected as a host in all four regions, I found a significant relationship between 
region and N. biflora occurrence as a host across oak mistletoe populations.   
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Fig. A4  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
three regions that hosted sub-plots where Fraxinus caroliniana was detected. Images represent locations where F. 
caroliniana was parasitized by mistletoe. Detected as a host in all three regions, I found a significant relationship 
between region and F. caroliniana occurrence as a host across oak mistletoe populations.   
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Fig. A5  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
three regions that hosted sub-plots where Persea palustris was detected. The image represents a location where P. 
palustris, restricted as a host to one region, was parasitized by mistletoe. 
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Fig. A6  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
two regions that hosted sub-plots where Quercus rubra was detected. Images represent locations where Q. rubra, 
restricted as a host to one region, was parasitized by mistletoe. 
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Fig. A7  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
two regions that hosted sub-plots where Quercus velutina was detected. The image represents a location where Q. 
velutina, restricted as a host to one region, was parasitized by mistletoe. 
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Fig. A8  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
four regions that hosted sub-plots where Carya spp. were detected. Images represent locations where Carya spp., 
restricted as hosts to three regions, were parasitized by mistletoe. 
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Fig. A9  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
three regions that hosted sub-plots where Ulmus alata was detected. Images represent locations where U. alata, 
restricted as a host to two regions, was parasitized by mistletoe. 
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Fig. A10  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
three regions that hosted sub-plots where Quercus laurifolia was detected. Images represent locations where Q. 
laurifolia, restricted as a host to two regions, was parasitized by mistletoe. 
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Fig. A11  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
five regions that hosted sub-plots where Carpinus caroliniana was detected. Images represent locations where C. 
caroliniana, restricted as a host to two regions, was parasitized by mistletoe. 
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Fig. A12  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
four regions that hosted sub-plots where Quercus nigra was detected. Images represent locations where Q. nigra, 
restricted as a host to three regions, was parasitized by mistletoe. 
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Fig. A13  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
four regions that hosted sub-plots where Fraxinus pennsylvanica was detected. Images represent locations where 
F. pennsylvanica, restricted as a host to three regions, was parasitized by mistletoe. 
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Fig. A14  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
three regions that hosted sub-plots where Quercus phellos was detected. Images represent locations where Q. 
phellos, restricted as a host to two regions, was parasitized by mistletoe. 
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Fig. A15  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
three regions that hosted sub-plots where Alnus serrulata was detected. Images represent locations where A. 
serrulata, restricted as a host to two regions, was parasitized by mistletoe. 
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Fig. A16  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
two regions that hosted sub-plots where Fraxinus americana was detected. The image represents a location where 
F. americana, restricted as a host to one region, was parasitized by mistletoe. 
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Fig. A17  Locations of oak mistletoe populations detected during plot surveys and with ad hoc observations across 
three regions that hosted sub-plots where Fraxinus profunda was detected. Images represent locations where F. 
profunda, restricted as a host to two regions, was parasitized by mistletoe. 
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Fig. A18  Total basal area (BA; m2) across all sub-plots for the 25 angiosperm tree species with the highest BA. 
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Fig. A19  Posterior distributions of predicted occurrence rates of red-shouldered hawk (Buteo lineatus) in forested 
upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A20  Posterior distributions of predicted occurrence rates of Carolina wren (Thryothorus ludovicianus) in 
forested upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A21  Posterior distributions of predicted occurrence rates of gray catbird (Dumetella carolinensis) in forested 
upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A22  Posterior distributions of predicted occurrence rates of swamp sparrow (Melospiza georgiana) in forested 
upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A23  Posterior distributions of predicted occurrence rates of rusty blackbird (Euphagus carolinus) in forested 
upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A24  Posterior distributions of predicted occurrence rates of yellow-rumped warbler (myrtle) (Setophaga 
coronata coronata) in forested upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A25 Posterior distributions of predicted occurrence rates of red-headed woodpecker (Melanerpes 
erythrocephalus) in forested upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A26  Posterior distributions of predicted occurrence rates of tufted titmouse (Baeolophus bicolor) in forested 
upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A27  Posterior distributions of predicted occurrence rates of white-breasted nuthatch (Sitta carolinensis) in 
forested upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A28  Posterior distributions of predicted occurrence rates of cedar waxwing (Bombycilla cedrorum) in forested 
upland and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A29  Posterior distributions of predicted occurrence rates of eastern bluebird (Sialia sialis) in forested upland 
and forested wetland habitat in eastern Virginia and North Carolina. 
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Fig. A30  Posterior distributions of the effects of forested wetland habitat on the occurrence of oak mistletoe 
(Phoradendron leucarpum) and red-bellied woodpecker (Melanerpes carolinus). These effects were deemed 
significantly different as greater than 95% of the samples from the posterior of this relationship for oak mistletoe 
were greater than such samples for red-bellied woodpecker (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). 
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Fig. A31  Posterior distributions of the effects of forested wetland habitat on the occurrence of oak mistletoe 
(Phoradendron leucarpum) and brown thrasher (Toxostoma rufum). These effects were deemed statistically 
different as greater than 95% of the samples from the posterior of this relationship for oak mistletoe were greater 
than such samples for brown thrasher (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). 
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Fig. A32  Posterior distributions of the effects of forested wetland habitat on the occurrence of oak mistletoe 
(Phoradendron leucarpum) and Carolina chickadee (Poecile carolinensis). These effects were deemed statistically 
different as greater than 95% of the samples from the posterior of this relationship for oak mistletoe were greater 
than such samples for Carolina chickadee (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). 
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Fig. A33  Posterior distributions of the effects of forested wetland habitat on the occurrence of oak mistletoe 
(Phoradendron leucarpum) and tufted titmouse (Baeolophus bicolor). These effects were deemed statistically 
different as greater than 95% of the samples from the posterior of this relationship for oak mistletoe were greater 
than such samples for tufted titmouse (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). 
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Fig. A34  Posterior distributions of the effects of forested wetland habitat on the occurrence of oak mistletoe 
(Phoradendron leucarpum) and northern cardinal (Cardinalis cardinalis). These effects were deemed statistically 
different as greater than 95% of the samples from the posterior of this relationship for oak mistletoe were greater 
than such samples for northern cardinal (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). 
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Fig. A35  Posterior distributions of the effects of forested wetland habitat on the occurrence of oak mistletoe 
(Phoradendron leucarpum) and eastern towhee (Pipilo erythrophthalmus). These effects were deemed statistically 
different as greater than 95% of the samples from the posterior of this relationship for oak mistletoe were greater 
than such samples for eastern towhee (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). 
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Fig. A36  Posterior distributions of the effects of forested wetland habitat on the occurrence of oak mistletoe 
(Phoradendron leucarpum) and yellow-bellied sapsucker (Sphyrapicus varius). These effects were deemed 
statistically different as greater than 95% of the samples from the posterior of this relationship for oak mistletoe 
were greater than such samples for eastern towhee (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). 
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Fig. A37  Posterior distributions of the effects of forested wetland habitat on the occurrence of oak mistletoe 
(Phoradendron leucarpum) and purple finch (Haemorhous purpureus). These effects were deemed statistically 
different as greater than 95% of the samples from the posterior of this relationship for oak mistletoe were greater 
than such samples for purple finch (Ruiz-Gutiérrez et al. 2010, Flanders et al. 2015). 
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Fig. A38  The delta K statistic of Evanno et al. (2005) calculated using Structure Harvester (Earl & vonHoldt 2012) 
with results from runs of the program STRUCTURE (Pritchard et al. 2000) across different hypothesized numbers of 
oak mistletoe populations (K) in eastern Virginia and North Carolina. 
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Fig. A39  Ancestry proportions for oak mistletoe samples grouped by host association region as estimated by 
STRUCTURE (Pritchard et al. 2000) and optimally aligned across runs with CLUMPP (Jakobsson & Rosenberg 2007). 
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Fig. A40  The delta K statistic of Evanno et al. (2005) calculated using Structure Harvester (Earl & vonHoldt 2012) 
with results from runs of the program STRUCTURE (Pritchard et al. 2000) across different hypothesized numbers of 
oak mistletoe populations (K) in eastern Virginia and North Carolina. This analysis only included individuals whose 
previously estimated ancestry in the “Nyssa” cluster was less than 0.65. 
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Fig. A41  Visualization of genetic relatedness between site and host-specific mistletoe populations with a minimum 
spanning tree created in EDENetworks version 2.18 (Kivelä et al. 2015). Thick lines between nodes that are colored 
green represent stronger links relative to thin lines colored blue that represent lower relatedness. Node size 
reflects the number of connections to other populations in the network, with populations from urban habitat 
colored red and populations from forested wetland habitat colored blue. Links on this tree suggest the lack of a 
relationship between clustering among mistletoe samples based on genetic distance and habitat type. 
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Fig. A42  Visualization of genetic relatedness between site and host-specific mistletoe populations with a minimum 
spanning tree created in EDENetworks version 2.18 (Kivelä et al. 2015). Thick, green lines between nodes represent 
stronger links relative to thin lines colored blue that represent lower relatedness. Node size reflects the number of 
connections to other populations in the network, with populations in the outer Coastal Plain south of the James 
River colored red, populations in the inner Coastal Plain south of the James River colored blue, and populations in 
the Coastal Plain north of the James River colored green. Links on this tree suggest clustering among mistletoe 
samples from Nyssa hosts based on genetic distance and the lack of a relationship between such clustering and 
geographic region.  
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Fig. A43  Locations of 26 plots for planting oak mistletoe seeds in Great Dismal Swamp National Wildlife Refuge, 
city of Suffolk, VA, USA; plots were in forested wetland habitat either within 15 m of an edge (edge strata) or 
greater than 15 m from an edge (inner strata). 
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Fig. A44  Locations of 25 plots for planting oak mistletoe seeds in South Quay Sandhills State Natural Area 
Preserve, city of Suffolk and Southampton Co., VA, USA; plots were in forested wetland habitat either within 15 m 
of an edge (edge strata) or greater than 15 m from an edge (inner strata). 
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Fig. A45  Model-averaged predictions of proportions of oak mistletoe seeds remaining approximately 3 months 
after planting across two alternative planting methods; error bars represent 95% confidence intervals. 
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Fig. A46  Model-averaged predictions of oak mistletoe germination rates across two alternative planting methods; 
error bars represent 95% confidence intervals. 
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APPENDIX 

TABLES 

 

Table A1  Species and genera of woody plants detected as hosts for oak mistletoe in forested habitats at plots and 
sites selected ad hoc across the study area.  

Host trees identified to species 

Acer rubrum 

Acer saccharinum 

Alnus serrulata 

Betula nigra 

Carpinus caroliniana 

Carya ovata 

Celtis  laevigata 

Fraxinus americana 

Fraxinus caroliniana 

Fraxinus pennsylvanica 

Fraxinus profunda 

Liquidambar styraciflua 

Nyssa aquatica 

Nyssa biflora 

Nyssa sylvatica 

Persea palustris 

Quercus falcata 

Quercus laevis 

Quercus laurifolia 

Quercus lyrata 

Quercus marilandica 

Quercus nigra 

Quercus pagoda 

Quercus palustris 

Quercus phellos 

Quercus rubra 

Quercus velutina 

Styrax americanus 

Ulmus alata 

Ulmus americana 

Host trees identified to genus or sub-genus 

Carya sp. 

Celtis sp. 

Quercus (Lobatae sub-genus) sp. 
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Table A1 continued. 

Shrub species identified as host 

Cornus stricta 

Liana species identified as host 

Ampelopsis arborea 

 
 
 
 
Table A2  Species and genera of trees detected in sub-plots.  

Sub-plot trees identified to species 

Acer floridanum 

Acer negundo 

Acer rubrum 

Ailanthus altissima 

Alnus serrulata 

Amelanchier canadensis 

Aralia spinosa 

Asimina triloba 

Betula nigra 

Carpinus caroliniana 

Carya cordiformis 

Carya glabra 

Carya pallida 

Cephalanthus occidentalis 

Cercis canadensis 

Chamaecyparis thyoides 

Cornus florida 

Cyrilla racemiflora 

Diospyros virginiana 

Euonymus americana 

Fagus grandifolia 

Fraxinus americana 

Fraxinus caroliniana 

Fraxinus pennsylvanica 

Fraxinus profunda 

Gordonia lasianthus 

Ilex decidua 

Ilex myrtifolia 

Ilex opaca 

Ilex verticillata 

Ilex vomitoria 

Juglans nigra 
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Table A2 continued. 

Juniperus virginiana 

Kalmia latifolia 

Ligustrum sinense 

Liquidambar styraciflua 

Liriodendron tulipifera 

Magnolia acuminata 

Magnolia virginiana 

Morella cerifera 

Nyssa aquatica 

Nyssa biflora 

Nyssa sylvatica 

Ostrya virginiana 

Oxydendrum arboreum 

Persea palustris 

Pinus echinata 

Pinus palustris 

Pinus serotina 

Pinus taeda 

Pinus virginiana 

Platanus occidentalis 

Populus heterophylla 

Prunus serotina 

Quercus alba 

Quercus coccinea 

Quercus falcata 

Quercus incana 

Quercus laurifolia 

Quercus michauxii 

Quercus montana 

Quercus nigra 

Quercus phellos 

Quercus rubra 

Quercus velutina 

Quercus virginiana 

Rhododendron maximum 

Rhus copallinum 

Sassafras albidum 

Stewartia malacodendron 

Styrax americanus 

Symplocos tinctoria 

Taxodium distichum 

Toxicodendron vernix 
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Table A2 continued. 

Ulmus alata 

Ulmus americana 

Sub-plot trees identified to taxa higher than species 

Carya sp. 

Chamaecyparis/Juniperus 

Fraxinus americana/pennsylvanica 

Fraxinus caroliniana/pennsylvanica/profunda 

Fraxinus sp. 

Ilex verticillata/laevigata 

Morus sp. 

Pinus taeda/serotina 

Pinus virginiana/echinata 

Quercus (Lobatae sub-genus) sp. 

Quercus (Quercus sub-genus) sp. 

Quercus sp. 

Ulmus sp. 
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Table A3  Alternative generalized linear models for the relationship between Liquidambar styraciflua BA at sub-
plots and region as ranked by AICc. 

Variables included in model K AICc Delta AICc AICc weight Cumulative weight LL 

Intercept (null) 2 197.37 0 0.52 0.52 -96.51 

Intercept + region 3 197.55 0.18 0.48 1 -95.41 

 
 
 
 
Table A4  Alternative generalized linear models for the relationships between Acer rubrum occurrence at plots and 
habitat type and region as ranked by AICc. 
 

Variables included in model K AICc Delta AICc AICc weight Cumulative weight LL 

Intercept + region 2 115.76 0 0.6 0.6 -55.81 
Intercept + region + hab 3 117.18 1.42 0.29 0.89 -55.46 
Intercept + region + hab + interaction 4 119.31 3.55 0.1 0.99 -55.43 
Intercept (null) 1 125.59 9.84 0 1 -61.78 
Intercept + hab 2 126.45 10.69 0 1 -61.16 
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Table A5  List of shrub species commonly encountered in sub-plots but typically not recorded. 

Woody plant taxa encountered but not typically recorded in sub-plots because considered shrubs 

Aronia arbutifolia 

Baccharis halimifolia 

Clethra alnifolia 

Cornus spp. other than C. florida 

Elaeagnus spp. 

Eubotrys racemose 

Ilex coriacea 

Ilex glabra 

Ilex laevigata 

Itea verticillate 

Lindera benzoin 

Lyonia ligustrina 

Lyonia lucida 

Morella caroliniensis 

Rhododendron viscosum 

Rosa spp. 

Vaccinium spp. other than V. arborea 

Viburnum spp.  
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Table A6  Number of oak mistletoe samples collected from 19 host species and 5 hosts identified to the genus or 
sub-genus level. 

Host species Number of samples 

Acer rubrum 260 

Acer saccharinum 3 

Acer sp. 6 

Alnus serrulata 5 

Betula nigra  23 

Fraxinus caroliniana 26 

Fraxinus pennsylvanica 2 

Fraxinus profunda 3 

Fraxinus sp. 4 

Gleditsia triacanthos 30 

Liquidambar styraciflua 1 

Quercus (Lobatae sub-genus) sp.  15 

Nyssa aquatica 2 

Nyssa biflora 44 

Nyssa sylvatica 2 

Pyrus calleryana 17 

Quercus laurifolia 1 

Quercus nigra 29 

Quercus phellos 24 

Quercus phellos/laurifolia 3 

Ulmus alata 13 

Ulmus americana 12 

Ulmus parviflora 1 

Ulmus sp. 3 
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Table A7  Forest bird species detected on surveys conducted during winter seasons (Dec–Mar) of 2015-2016 to 
that of 2019-2020 in eastern Virginia and North Carolina. Species were classified as frugivores or non-frugivores 
based on reported winter diets (Billerman et al. 2020). 

 

 

Frugivores 

red-bellied woodpecker (Melanerpes carolinus) 

yellow-bellied sapsucker (Sphyrapicus varius) 

northern flicker (Colaptes auratus) 

pileated woodpecker (Dryocopus pileatus)  

white-eyed vireo (Vireo griseus) 

Carolina chickadee (Poecile carolinensis) 

tufted titmouse (Baeolophus bicolor) 

cedar waxwing (Bombycilla cedrorum) 

gray catbird (Dumetella carolinensis) 

brown thrasher (Toxostoma rufum) 

eastern bluebird (Sialia sialis) 

hermit thrush (Catharus guttatus) 

American robin (Turdus migratorius) 

purple finch (Haemorhous purpureus) 

fox sparrow (Passerella iliaca) 

eastern towhee (Pipilo erythrophthalmus) 

rusty blackbird (Euphagus carolinus) 

yellow-rumped warbler (myrtle) (Setophaga 

coronata coronata) 

northern cardinal (Cardinalis cardinalis) 

 

 

Non-frugivores 

wood duck (Aix sponsa) 

mourning dove (Zenaida macroura) 

sharp-shinned hawk (Accipiter striatus) 

Cooper’s hawk (Accipiter cooperii) 

red-shouldered hawk (Buteo lineatus) 

barred owl (Strix varia) 

red-headed woodpecker (Melanerpes 

erythrocephalus) 

downy woodpecker (Dryobates pubescens) 

red-cockaded woodpecker (Dryobates borealis) 

hairy woodpecker (Dryobates villosus) 

Eastern phoebe (Sayornis phoebe) 

blue-headed vireo (Vireo solitarius) 

blue jay (Cyanocitta cristata) 

common raven (Corvus corax) 

ruby-crowned kinglet (Corthylio calendula) 

golden-crowned kinglet (Regulus satrapa) 

red-breasted nuthatch (Sitta canadensis) 

white-breasted nuthatch (Sitta carolinensis) 

brown-headed nuthatch (Sitta pusilla) 

brown creeper (Certhia americana) 

house wren (Troglodytes aedon) 
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Table A7 continued.

Frugivores 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-frugivores 

winter wren (Troglodytes hiemalis) 

sedge wren (Cistothorus stellaris) 

Carolina wren (Thryothorus ludovicianus) 

house finch (Haemorhous mexicanus) 

pine siskin (Spinus pinus) 

American goldfinch (Spinus tristis) 

chipping sparrow (Spizella passerina) 

field sparrow (Spizella pusilla) 

dark-eyed junco (Junco hyemalis) 

white-throated sparrow (Zonotrichia albicollis) 

song sparrow (Melospiza melodia) 

swamp sparrow (Melospiza georgiana) 

red-winged blackbird (Agelaius phoeniceus) 

brown-headed cowbird (Molothrus ater) 

common grackle (Quiscalus quiscula) 

orange-crowned warbler (Leiothlypis celata) 

common yellowthroat (Geothlypis trichas) 

pine warbler (Setophaga pinus) 
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Table A8  Probabilities of differences between estimates of the relationship between forested wetland habitat and 
occurrence for oak mistletoe and avian frugivore species. Significant probabilities (> 0.95) indicated in bold. 

Species Pr(mistletoe coeff. > frugivore coeff.) 

red-bellied woodpecker 0.96 

yellow-bellied sapsucker 0.98 

northern flicker 0.89 

pileated woodpecker 0.86 

white-eyed vireo 0.87 

Carolina chickadee 0.96 

tufted titmouse 1 

cedar waxwing 0.87 

gray catbird 0.54 

brown thrasher 0.95 

eastern bluebird 0.99 

hermit thrush 0.7 

American robin 0.86 

purple finch 0.99 

fox sparrow 0.91 

eastern towhee 0.97 

rusty blackbird 0.67 

yellow-rumped warbler (myrtle) 0.35 

northern cardinal 0.99 

 

 

 

 

 

 

 

  

 

 



145 

 

 

Table A9  Distribution of oak mistletoe seeds planted at field plots across 11 host species and genera. 

Species of tree selected for mistletoe seed sowing Number of mistletoe seeds sowed 

Acer rubrum 765 

Nyssa biflora 140 

Fraxinus sp. 85 

Liquidambar styraciflua 25 

Nyssa aquatica 25 

Nyssa sylvatica 20 

Quercus nigra 10 

Alnus serrulata 5 

Diospyros virginiana 5 

Oxydendrum arboreum 5 

Styrax americanus 5 

 
 
 
 
Table A10  Alternative generalized linear models for the relationships between the proportion of oak mistletoe 
seeds remaining approximately 3 months after planting and the fixed effects of planting method and branch 
diameter as ranked by AIC. All models included the fixed effect of site (Great Dismal Swamp National Wildlife 
Refuge vs. South Quay Sandhills Natural Area Preserve) and the random effects of plot and nested branch 
identities. 

Variables included in model K AICc Delta AICc AICc weight Cumulative weight LL 

Site + planting method 5 1011.2 0 0.73 0.73 -500.57 

Site + planting method + branch diam. 6 1013.22 2.02 0.27 1 -500.57 

Site (null) 4 1064.1 52.89 0 1 -528.03 

Site + branch diameter 5 1065.27 54.06 0 1 -527.61 
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Table A11  Alternative generalized linear models for the relationships between oak mistletoe seed germination 
rates and the fixed effects of planting method, year of planting, and percent canopy openness as ranked by AIC. All 
models included the random effect of branch identity. 

Variables included in model K AICc Delta AICc AICc weight Cumulative weight LL 

Intercept + planting method + year 5 701.06 0 1 1 -345.49 

Intercept + year 4 713.96 12.9 0 1 -352.95 

Intercept + year + light 5 715.3 14.24 0 1 -352.61 

Intercept + planting method 3 754.78 53.72 0 1 -374.37 

Intercept + planting method + light 4 756.8 55.74 0 1 -374.37 

Intercept (null) 2 765.3 64.25 0 1 -380.64 

Intercept + light 3 767.26 66.2 0 1 -380.61 

 
 
 
 
Table A12  Alternative generalized linear models for the relationship between oak mistletoe seed germination 
rates and the fixed effect of flood regime treatments as ranked by AIC. All models included the random effects of 
plastic tub and nested sapling identities. 

Variables included in model K AICc Delta AICc AICc weight Cumulative weight LL 

Intercept (null) 3 248.13 0 0.87 0.87 -121.03 

Intercept + flooding 5 251.97 3.84 0.13 1 -120.9 

 

 

 

 

 

 

 

 



147 

 

 

VITA 

Nicholas Pearce Flanders 

Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529 

 

EDUCATION 

Old Dominion University, Norfolk, Virginia, B.S. in Biology (2007-2011) 

North Carolina State University, Raleigh, North Carolina, M.S. in Fisheries, Wildlife, and Conservation Biology 

(2011-2014) 

 

RESEARCH EXPERIENCE 

Monitoring breeding Swainson’s Warblers (May-Jun 2020) 

Great Dismal Swamp National Wildlife Refuge, Suffolk, VA 

Monitoring pocosin habitat managed for Red-cockaded Woodpeckers (May–Aug 2014) 

Great Dismal Swamp National Wildlife Refuge, Suffolk, VA 

Monitoring grassland habitat for breeding songbirds (May-Aug 2011) 

Rappahannock River Valley National Wildlife Refuge, Warsaw, VA 

 

PUBLICATION 

Flanders NP, Gardner B, Winiarski KJ, Paton PWC, Allison T, O’Connell AF (2015) Key seabird areas in southern New 

England identified using a community occupancy model. Mar Ecol Progr 533:277–290 

 

 

 

 


	The Influences of Disperser Behavior, Host Availability, and Environmental Conditions on the Distribution of Oak Mistletoe [Phoradendron Leucarpum (RAF.) Reveal & M. C. Johnst.] in Eastern Virginia and North Carolina
	Recommended Citation

	tmp.1664989644.pdf.utArA



